Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cytoplasmic male sterility (CMS) offers a unique system to understand cytoplasmic nuclear crosstalk, and is also employed for exploitation of hybrid vigor in various crops. Pigeonpea A4-CMS, a predominant source of male sterility, is being used for efficient hybrid seed production. The molecular mechanisms of CMS trait remain poorly studied in pigeonpea. We performed genome-wide transcriptome profiling of A4-CMS line ICPA 2043 and its isogenic maintainer ICPB 2043 at two different stages of floral bud development (stage S1 and stage S2). Consistent with the evidences from some other crops, we also observed significant difference in the expression levels of genes in the later stage, i.e., stage S2. Differential expression was observed for 143 and 55 genes within the two stages of ICPA 2043 and ICPB 2043, respectively. We obtained only 10 differentially expressed genes (DEGs) between the stage S1 of the two genotypes, whereas expression change was significant for 582 genes in the case of stage S2. The qRT-PCR assay of randomly selected six genes supported the differential expression of genes between ICPA 2043 and ICPB 2043. Further, GO and KEGG pathway mapping suggested a possible compromise in key bioprocesses during flower and pollen development. Besides providing novel insights into the functional genomics of CMS trait, our results were in strong agreement with the gene expression atlas of pigeonpea that implicated various candidate genes like sucrose-proton symporter 2 and an uncharacterized protein along with pectate lyase, pectinesterase inhibitors, L-ascorbate oxidase homolog, ATPase, β-galactosidase, polygalacturonase, and aldose 1-epimerase for pollen development of pigeonpea. The dataset presented here provides a rich genomic resource to improve understanding of CMS trait and its deployment in heterosis breeding in pigeonpea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-021-00775-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!