Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To assess the accuracy of dynamic computer-aided implant surgery (dCAIS) systems when used to place dental implants and to compare its accuracy with static computer-aided implant surgery (sCAIS) systems and freehand implant placement.
Materials And Methods: An electronic search was made to identify all relevant studies reporting on the accuracy of dCAIS systems for dental implant placement. The following PICO question was developed: "In patients or artificial models, is dental implant placement accuracy higher when dCAIS systems are used in comparison with sCAIS systems or with freehand placement? The main outcome variable was angular deviation between the central axes of the planned and final position of the implant. The data were extracted in descriptive tables, and a meta-analysis of single means was performed in order to estimate the deviations for each variable using a random-effects model.
Results: Out of 904 potential articles, the 24 selected assessed 9 different dynamic navigation systems. The mean angular and entry 3D global deviations for clinical studies were 3.68° (95% CI: 3.61 to 3.74; I = 99.4%) and 1.03 mm (95% CI: 1.01 to 1.04; I = 82.4%), respectively. Lower deviation values were reported in in vitro studies (mean angular deviation of 2.01° (95% CI: 1.95 to 2.07; I = 99.1%) and mean entry 3D global deviation of 0.46 mm (95% CI: 0.44 to 0.48 ; I = 98.5%). No significant differences were found between the different dCAIS systems. These systems were significantly more accurate than sCAIS systems (mean difference (MD): -0.86°; 95% CI: -1.35 to -0.36) and freehand implant placement (MD: -4.33°; 95% CI: -5.40 to -3.25).
Conclusion: dCAIS systems allow highly accurate implant placement with a mean angular of less than 4°. However, a 2-mm safety margin should be applied, since deviations of more than 1 mm were observed. dCAIS systems increase the implant placement accuracy when compared with freehand implant placement and also seem to slightly decrease the angular deviation in comparison with sCAIS systems.
Clinical Relevance: The use of dCAIS could reduce the rate of complications since it allows a highly accurate implant placement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00784-021-03833-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!