Background: One of the main sources of ischemia/reperfusion injury (IRI) and release of free oxygen radicals (FORs) during extracorporeal circulation (ECC) during cardiac surgery is neutrophils. In this study, we investigated the potential effects of our modification of del Nido cardioplegia (mDNC) (amino acids enriched del Nido cardioplegia) on myocardial polymorphonuclear leucocyte (PMNL) accumulation. We also compared the effects of our mDND and classical del Nido cardiplegia (cDNC) on ventricular contractile functions in coronary artery bypass grafting (CABG) surgery.
Patients And Methods: Our study included 100 isolated CABG patients with similar characteristics, including age, gender, preoperative medications, diabetes, hypertension, and left ventricular ejection fraction (LVEF). The patients were divided into two groups. Amino acids supplemented del Nido cardioplegia (L-aspartate and L-glutamate at a dose of 13 milimol/L) in 50 patients (study group, G1). In the remaining 50 patients, we used a classical del Nido cardioplegic solution (cDNC) (control group, G2). Myocardial Tru-Cut biopsy from the right ventricle was taken before the institution of ECC and after weaning from ECC in all patients. Cardiac troponine-I (cTn-I), tumor necrosis factor-alpha (TNF-Alpha), Pro-Brain Natriuretic Peptide (Pro-BNP), and lactate levels were measured pre- and postoperatively. Invasive monitoring was performed to provide the left ventricular functions in both groups in the operating room and noted by a blinded anaesthesiologist.
Results: Five patients died post-surgery (5%) (two from SG and three from CG (P = .67), due to low cardiac output syndrome or multiorgan failure. At the postoperative period, cardiac output (CO) and stroke volume index (SVI) was higher in mDNC (mean ± SDS; 32.1 ± 7 versus 22.2 ± 6.9 mL/min/m² (P < .001). CI was significantly higher in mDNC after surgery (3.10 ± 0.76 versus 2.40 ± 0.30L/min/m² (P = .002). Ten patients (20%) in mDNC and 16 patients (32%) in cDNC required inotropic support (P < .001). The postoperative inotropic requirement was less in mDNC (6.1 ± 1.8 mg/kg versus 9.2 ± 1.9 mg/kg, P < .004). Blood gas analyses from the coronary sinus showed that myocardial acidosis was more severe in the control group [pH (0.10 ± 0.09 versus 0.054 ± 0.001; P = .34)]. Blood lactate levels were significantly high in the control group (1.01 ± 0.007 mmol/L versus 1.92 ± 0.35 mmol/L) (P = .22). No difference was found when compared with cardioplegia volume in the mDNC and cDNC groups (mDNC= 990.00 ± 385 mL in DNC = 960 ± 240 mL, P = .070). An aortic cross-clamp time in the mDNC and cDNC groups were 88.4 ± 8.9 min, and 93 ± 11 min, (P = .76), but cardiopulmonary bypass time was significantly low in mDNC (mDNC = 98.3 ± 22.5 min, DNC = 126 ± 19.5 min, P = .0020). TNF-Alpha and Pro-BNP levels in patients received mDNC were significantly low (P = .022). Postoperative cardiac enzyme levels (creatine kinase-MB and high sensitive troponin-I) were significantly low in the mDNC group (P = .0034). Myocardial biopsy results showed that myocardial PMNL accumulation was significantly high in the control group (P = .001). The amount of inotropic agent use was significantly high in the control group (P = .003). After weaning from ECC, the left ventricular stroke work index (LVSWI), cardiac index (CI), and heart rate (HR) were significantly high in the study group (P = .032; P = .002; P = .01). Postoperative blood and blood products requirements were significantly low in the mDNC group (P = .002). At pre-discharge echocardiography, the mDNC group demonstrated significantly higher ventricular ejection fraction (37.9 ± 4.3% and 29.7 ± 3.8%, respectively (P = .003).
Conclusion: Our study findings show that glutamate-aspartate supplemented del Nido cardioplegia significantly decrease myocardial PMNL accumulation with reduced release of biochemical markers, including cardiac troponin-I, TNF-alpha, and Pro-Bnp. Our study results demonstrated that amino acids supplementation in del Nido cardioplegia has some advantages in CABG patients, including the decrease of perioperative myocardial infarction and increase significantly the left ventricular functions including ventricular SVI and CI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1532/hsf.3265 | DOI Listing |
JACC Adv
January 2025
Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.
Background: The Fontan operation is associated with chronic venous hypertension, liver and renal disease, and several other sequelae. The alterative surgical approach, when feasible, a biventricular conversion (BiV), may diminish some of these long-term risks.
Objectives: The aim of this study was to compare long-term outcomes of patients undergoing BiV with those undergoing a destination Fontan operation.
Sci Rep
December 2024
Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
Heart transplantation remains the ultimate treatment strategy for neonates and children with medically refractory end-stage heart failure and utilization of donors after circulatory death (DCD) can expand th donor pool. We have previously shown that mitochondrial transplantation preserves myocardial function and viability in neonatal swine DCD hearts to levels similar to that observed in donation after brain death (DBD). Herein, we sought to investigate the transcriptomic and proteomic pathways implicated in these phenotypic changes using ex situ perfused swine hearts.
View Article and Find Full Text PDFImmunity
January 2025
Department of Immunology, Harvard Medical School, Boston, MA, USA. Electronic address:
Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models.
View Article and Find Full Text PDFAnn Thorac Surg
December 2024
Georgia Institute of Technology and Emory University, Atlanta, GA. Electronic address:
Background: In October 2022, the Heart Valve Collaboratory and Food and Drug Administration convened a global multidisciplinary workshop to address the unmet clinical need to promote and accelerate the development of pediatric-specific heart valve technologies.
Methods: The Pediatric Heart Valve Global Multidisciplinary Workshop was convened in October 2022. Key stakeholders, including expert clinicians in pediatric cardiology and cardiac surgery, valve manufacturers, engineers and scientists were assembled to review the current state-of-the-art, discuss unique challenges in the pre-and post-market evaluation of pediatric valve therapies, and highlight emerging technologies that show potential to address some of the key unmet needs of children with valve disease.
J Am Coll Cardiol
November 2024
Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!