Piezoelectric material-based catalysis that relies on an external stress-induced piezopotential has been demonstrated to be an effective strategy toward various chemical reactions. In this work, non-noble metal Ni-decorated ultralong monocrystal GaN nanowires (NWs) were prepared through a chemical vapor deposition (CVD) technique, followed by a photodeposition method. The piezocatalytic activity of the GaN NWs was enhanced by ∼9 times after depositing the Ni cocatalyst, generating hydrogen gas of ∼88.3 μmol·g·h under ultrasonic vibration (110 W and 40 kHz), which is comparable to that of Pt-loaded GaN NWs. Moreover, Ni/GaN NWs with smaller diameters (∼100 nm) demonstrated superior piezocatalytic efficiency, which can be attributed to the large piezoelectric potential evidenced by both finite-element analysis and piezoresponse force microscopy measurements. These results demonstrate the promising application potential of non-noble metal loaded GaN nanostructures in hydrogen generation driven by weak mechanical energy from the surrounding environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c21976DOI Listing

Publication Analysis

Top Keywords

non-noble metal
12
gan nanowires
8
gan nws
8
gan
5
piezocatalytic induced
4
induced hydrogen
4
hydrogen production
4
production water
4
water non-noble
4
metal deposited
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!