Controlling grain orientations within polycrystalline all-inorganic halide perovskite solar cells can help increase conversion efficiencies toward their thermodynamic limits; however, the forces governing texture formation are ambiguous. Using synchrotron X-ray diffraction, mesostructure formation within polycrystalline CsPbI Br powders as they cool from a high-temperature cubic perovskite (α-phase) is reported. Tetragonal distortions (β-phase) trigger preferential crystallographic alignment within polycrystalline ensembles, a feature that is suggested here to be coordinated across multiple neighboring grains via interfacial forces that select for certain lattice distortions over others. External anisotropy is then imposed on polycrystalline thin films of orthorhombic (γ-phase) CsPbI Br perovskite via substrate clamping, revealing two fundamental uniaxial texture formations; i) I-rich films possess orthorhombic-like texture (<100> out-of-plane; <010> and <001> in-plane), while ii) Br-rich films form tetragonal-like texture (<110> out-of-plane; <110> and <001> in-plane). In contrast to relatively uninfluential factors like the choice of substrate, film thickness, and annealing temperature, Br incorporation modifies the γ-CsPbI Br crystal structure by reducing the orthorhombic lattice distortion (making it more tetragonal-like) and governs the formation of the different, energetically favored textures within polycrystalline thin films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202007224 | DOI Listing |
Small Methods
December 2024
Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
This study introduces a novel method for achieving highly ordered-crystalline InGaO [0 ≤ x ≤ 0.6] thin films on Si substrates at 250 °C using plasma-enhanced atomic-layer-deposition (PEALD) with dual seed crystal layers (SCLs) of γ-AlO and ZnO. Field-effect transistors (FETs) with random polycrystalline InGaO channels (grown without SCLs) show a mobility (µFE) of 85.
View Article and Find Full Text PDFNanoscale
December 2024
Electronic Materials Laboratory, K. N. Toosi University of Technology, Tehran 1631714191, Iran.
Multibit/analog artificial synapses are in demand for neuromorphic computing systems. A problem hindering the utilization of memristive artificial synapses in commercial neuromorphic systems is the rigidity of their functional parameters, plasticity in particular. Here, we report fabricating polycrystalline rutile-based memristive memory segments with Ti/poly-TiO/Ti structures featuring multibit/analog storage and the first use of a tunable DC-biasing for synaptic plasticity adjustment from short- to long-term.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Center of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LaPMET), Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO (BTO) and CoFeO (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO layer thickness (50-220 nm) on the films' structural, magnetic, and dielectric properties. The dense, polycrystalline films exhibited a tetragonal BaTiO phase and a cubic spinel CoFeO layer.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Achieving deep-blue light with high color saturation remains a critical challenge in the development of white light-emitting diode (LED) technology, necessitating luminescent materials that excel in efficiency, low toxicity, and stability. Here, we report the synthesis of [N(CH)]CuI (TEACuI) single crystals (SCs), which exhibit deep-blue photoluminescence (PL) at 450 nm. These crystals are characterized by a significant Stokes shift of 180 nm, a long lifetime of 1.
View Article and Find Full Text PDFNanoscale
December 2024
CIC NanoGUNE, Tolosa Hiribidea 76, E-20018 San Sebastian, Spain.
The synthesis and thermal properties of a volatile dimethylgold(III) complex MeAuSSP(OPr) are reported. Unlike most other volatile Au(I) and Au(III) compounds, the complex is stable upon storage, does not require any special handling conditions, and exhibits both good volatility and thermal stability. The compound was tested as a CVD and ALD precursor, yielding good quality films in both processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!