Controlled Release Utilizing Initiated Chemical Vapor Deposited (iCVD) of Polymeric Nanolayers.

Front Bioeng Biotechnol

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.

Published: January 2021

This review will focus on the controlled release of pharmaceuticals and other organic molecules utilizing polymeric nanolayers grown by initiated chemical vapor deposited (iCVD). The iCVD layers are able conform to the geometry of the underlying substrate, facilitating release from one- and two-dimensional nanostructures with high surface area. The reactors for iCVD film growth can be customized for specific substrate geometries and scaled to large overall dimensions. The absence of surface tension in vapor deposition processes allows the synthesis of pinhole-free layers, even for iCVD layers <10 nm thick. Such ultrathin layers also provide rapid transport of the drug across the polymeric layer. The mild conditions of the iCVD process avoid damage to the drug which is being encapsulated. Smart release is enabled by iCVD hydrogels which are responsive to pH, temperature, or light. Biodegradable iCVD layers have also be demonstrated for drug release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902001PMC
http://dx.doi.org/10.3389/fbioe.2021.632753DOI Listing

Publication Analysis

Top Keywords

controlled release
8
initiated chemical
8
chemical vapor
8
vapor deposited
8
deposited icvd
8
polymeric nanolayers
8
icvd layers
8
icvd
5
release utilizing
4
utilizing initiated
4

Similar Publications

Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through "On Site" Metal-Polyphenol Coordination Assembly for Improved Efficacy and Biosafety.

J Agric Food Chem

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, HO, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens.

View Article and Find Full Text PDF

Functionalized Terthiophene as an Ambipolar Redox System: Structure, Spectroscopy, and Switchable Proton-Coupled Electron Transfer.

J Am Chem Soc

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.

Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.

View Article and Find Full Text PDF

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

Bioabsorbable magnesium-based bulk metallic glass composite (BMGC) for improved medial opening wedge high tibial osteotomy in knee osteoarthritis.

J Orthop Translat

January 2025

Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 6F Biomedical Technology Building, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 23564, Taiwan.

Background And Objective: Osteoarthritis is a widespread and debilitating condition, particularly affecting the medial compartment of knee joint due to varus knee deformities. Medial opening wedge high tibial osteotomy (MOWHTO) has emerged as an effective treatment, but it comes with challenges like fractures, correction loss, and nonunion, leading to unsatisfactory results in up to 26 % of patients. In response, our study explores the potential of a bioabsorbable magnesium-based bulk metallic glass composite (MgZnCa BMGC) enriched with molybdenum particles as an innovative solution for MOWHTO.

View Article and Find Full Text PDF

Unlabelled: Proton exchange is a fundamental chemical event, and NMR provides the most direct readout of protonation events with site-specific resolution. Conventional approaches require manual titration of sample pH to collect a series of NMR spectra at different pH values. This requires extensive sample handling and often results in significant sample loss, leading to reduced signal or the need to prepare additional samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!