Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study develops a modelling framework for simulating the spread of infectious diseases within real cities. Digital copies of Birmingham (UK) and Bogotá (Colombia) are generated, reproducing their urban environment, infrastructure and population. The digital inhabitants have the same statistical features of the real population. Their motion is a combination of predictable trips (commute to work, school, etc.) and random walks (shopping, leisure, etc.). Millions of individuals, their encounters and the spread of the disease are simulated by means of high-performance computing and massively parallel algorithms for several months and a time resolution of 1 minute. Simulations accurately reproduce the COVID-19 data for Birmingham and Bogotá both before and during the lockdown. The model has only one adjustable parameter calculable in the early stages of the pandemic. Policymakers can use our digital cities as virtual laboratories for testing, predicting and comparing the effects of policies aimed at containing epidemics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897638 | PMC |
http://dx.doi.org/10.1098/rspa.2020.0653 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!