Development of monoclonal antibody is critical for targeted drug delivery because its characteristics determine improved therapeutic efficacy and reduced side-effect. Antibody therapeutics target surface molecules; hence, internalization is desired for drug delivery. As an antibody-drug conjugate, a critical parameter is drug-to-antibody ratio wherein the quantity of drugs attached to the antibody influences the antibody structure, stability, and efficacy. Here, we established a cell-based immunotoxin screening system to facilitate the isolation of functional antibodies with internalization capacities, and discovered an anti-human CD71 monoclonal antibody. To overcome the limitation of drug-to-antibody ratio, we employed the encapsulation capacity of liposome, and developed anti-CD71 antibody-conjugated liposome that demonstrated antigen-antibody dependent cellular uptake when its synthesis was optimized. Furthermore, anti-CD71 antibody-conjugated liposome encapsulating doxorubicin demonstrated antigen-antibody dependent cytotoxicity. In summary, this study demonstrates the powerful pipeline to discover novel functional antibodies, and the optimal method to synthesize immunoliposomes. This versatile technology offers a rapid and direct approach to generate antibodies suitable for drug delivery modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907096 | PMC |
http://dx.doi.org/10.1038/s41598-021-84043-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!