The Atlantic salmon (Salmo salar) is important to many ecosystems and local economies and has therefore become the focus of a broad range of research questions that have benefited from the availability of high-quality genomic resources. Albeit gene expression studies have been extensive for this species, the transcriptome information for Atlantic salmon whole blood has been lacking. A transcriptome of Atlantic salmon blood would be a valuable resource for future studies, especially those wishing to take non-lethal samples. Here, we report a whole blood transcriptome for Atlantic salmon constructed from twelve 8-month old salmon parr using RNA-seq. We identify transcriptomic proxies for the genotype at the major maturation timing locus vestigial-like 3 (vgll3). Differentially expressed genes between the early and late maturing genotypes showed overrepresented Gene Ontology (GO) terms with the strongest result linked to 13 ribosomal subunit genes. To assess how the whole blood gene expression profile relates to other tissues, we compare the blood transcriptome to the reference transcriptome of fourteen other tissue types using both a common PCA method and a novel method. The novel method compares transcriptomes when gene expression is visualised as a layer using thin-plate spline smoothers. Both methods found similar patterns with the blood transcriptome being quite unique compared to the transcription profiles of other tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.margen.2020.100809 | DOI Listing |
Foods
January 2025
Nofima AS, Richard Johnsensgate 4, 4068 Stavanger, Norway.
The aim of this study was to develop a chilled, texture-modified salmon product for dysphagia patients, enriched with dairy and fish hydrolysate proteins. The challenge was to create a product with appealing sensory qualities and texture that meets level 5 (minced & moist) of the IDDSI framework. Atlantic salmon () was heat-treated (95 °C/15 min), blended, and reconstructed by adding texture modifiers, casein and whey protein, and enzymatically derived fish hydrolysate.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.
This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Department of Zoology, University of British Columbia, Vancouver, Canada.
In a previous study, we demonstrated successful regeneration of Atlantic salmon gill tissue following up to 50 % filament resection. The present study explored 1) the capacity of gill tissue to regenerate following more severe trauma, 2) if regeneration potential varies across regions of the arch, and 3) how tissue loss impacts the physiology of neighboring unresected filaments. Fish were divided between two resected groups and a control non-resected one.
View Article and Find Full Text PDFACS Environ Au
January 2025
Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden.
Pharmaceutical contaminants have spread in natural environments across the globe, endangering biodiversity, ecosystem functioning, and public health. Research on the environmental impacts of pharmaceuticals is growing rapidly, although a majority of studies are still conducted under controlled laboratory conditions. As such, there is an urgent need to understand the impacts of pharmaceutical exposures on wildlife in complex, real-world scenarios.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.
Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!