Background: Spinocerebellar ataxia is a hereditary neurodegenerative disease characterized by changes in balance, locomotion and motor coordination. Stem cell therapies are currently being investigated as an alternative to delay the evolution of the disease, and some experimental studies have investigated the effect of stem cell treatment on spinocerebellar ataxia.
Objectives: The aim of this review was to investigate whether the application of stem cells produced an effect on functional recovery in individuals with spinocerebellar ataxia.
Methods: The studies included in this review investigated the efficacy and safety of a protocol for the application of mesenchymal stem cells extracted from umbilical cord and adipose tissue. Two studies used intrathecal route for application and one study used intravenous route.
Results: Studies have shown clinical improvement in the scores of the ICARS (International Cooperative Ataxia Rating Scale), ADL (Activities of Daily Living Scale), BBS (Berg Balance Scale) and SARA (Scale for the Assessment and Rating of Ataxia), but lacked statistical significance.
Conclusions: There was low evidence for recommending stem cell therapy in individuals with spinocerebellar ataxia, and no statistical difference was observed for improving functional recovery of patients. Further studies are needed with different designs, largest sample sizes and placebo control, to fully understand anticipated outcomes of cellular therapy for spinocerebellar ataxia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905903 | PMC |
http://dx.doi.org/10.1186/s40673-021-00130-8 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.
View Article and Find Full Text PDFStem Cells Dev
January 2025
Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia.
Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa.
Cell Regen
January 2025
Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
The cultivation and differentiation of human embryonic stem cells (hESCs) into organoids are crucial for advancing of new drug development and personalized cell therapies. Despite establishing of chemically defined hESC culture media over the past decade, these media's reliance on growth factors, which are costly and prone to degradation, poses a challenge for sustained and stable cell culture. Here, we introduce an hESC culture system(E6Bs) that facilitates the long-term, genetically stable expansion of hESCs, enabling cells to consistently sustain high levels of pluripotency markers, including NANOG, SOX2, TRA-1-60, and SSEA4, across extended periods.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!