Normal or diseased conditions that alter the brain's requirement for oxygen and nutrients via alterations to neurovascular coupling have an impact on the level of the neurovascular unit; comprising neuronal, glial and vascular components. The communications between the components of the neurovascular unit are precise and accurate for its functions; hence a minute disturbance can result in neurovascular dysfunction. Heavy metals such as cadmium, mercury, and lead have been identified to increase the vulnerability of the neurovascular unit to damage. This review examines the role of heavy metals in neurovascular dysfunctions and the possible mechanisms by which these metals act. Risk factors ranging from lifestyle, environment, genetics, infections, and physiologic ageing involved in neurological dysfunctions were highlighted, while stroke was discussed as the prevalent consequence of neurovascular dysfunctions. Furthermore, the role of these heavy metals in the pathogenesis of stroke consequently pinpoints the importance of understanding the mechanisms of neurovascular damage in a bid to curb the occurrence of neurovascular dysfunctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573402117666210225085528 | DOI Listing |
Stroke
February 2025
Neurovascular Research Unit, Pharmacology Department, Complutense Medical School, Instituto Investigación Hospital 12 Octubre, Madrid, Spain (G.D., B.D., A.M., J.M.P., I.L.).
Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.
View Article and Find Full Text PDFNeurochem Res
January 2025
Chongqing Key Laboratory of Biochemistry & Molecular, Pharmacology, School of Pharmacy, Chongqing Medical, University, District of Yuzhong, Chongqing, 400016, People's Republic of China.
J Neuropathol Exp Neurol
January 2025
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.
View Article and Find Full Text PDFOphthalmol Sci
November 2024
Casey Eye Institute, Oregon Health and Science University, Portland, Oregon.
Purpose: Retinopathy of prematurity (ROP) stage is defined by the visual appearance of the vascular-avascular border, which reflects a spectrum of pathologic neurovascular tissue (NVT). Previous work demonstrated that the thickness of the ridge lesion, measured using OCT, corresponds to higher clinical diagnosis of stage. This study evaluates whether the volume of anomalous NVT (ANVTV), defined as abnormal tissue protruding from the regular contour of the retina, can be measured automatically using deep learning to develop quantitative OCT-based biomarkers in ROP.
View Article and Find Full Text PDFEndocrine
January 2025
Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, Florence, Italy.
Purpose: To compare functional deficits associated to surgery with those caused by the growth of the head and neck paragangliomas (HNPGLs).
Methods: 72 patients with HNPGLs were included. Patients were divided in group A (49 patients undergoing surgery) and group B (23 patients following a wait and see approach).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!