Minimizing transient microenvironment-associated variability for analysis of environmental anthropogenic contaminants via ambient ionization.

Sci Total Environ

Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, United States; Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH 43606, United States; School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, United States. Electronic address:

Published: June 2021

The rapid and quantitative analysis of anthropogenic contaminants in environmental matrices is crucial for regulatory testing and to elucidate the environmental fate of these pollutants. Direct ambient mass spectrometry (AMS) methodologies greatly increase sample throughput, can be adapted for onsite analysis and are often regarded as semi-quantitative by most developed protocols. One of the limitations of AMS, especially for on site analysis applications, is the irreproducibility of the measurements related to the occurrence of transient microenvironments (TME) and variable background interferences. In this work we report an effective strategy to minimize these effects by hyphenating, for the first time, solid phase microextraction (SPME) arrow to mass spectrometry via a thermal desorption unit (TDU) and direct analysis in real time (DART) source. The developed method was optimized for the extraction and analysis of pesticides and pharmaceuticals from surface water. It was demonstrated that the hyphenation of the SPME and TDU-DART resulted in reduced background contamination, indicating the suitability of the method for onsite analysis even in variable and non-ideal environments. Model analytes were quantitated in the low μg/L range with a total analysis time of less than 5 min, linear dynamic ranges (LDR) and interday reproducibility for most compounds being 2.5-500 μg/L and lower than 10%, respectively. The developed approach provides an excellent analytical tool that can be applied for the onsite high-throughput analysis of water samples as well as air and aereosols. Considering the tunability of our extraction process, time-resolved environmental monitoring can be achieved onsite within minutes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145789DOI Listing

Publication Analysis

Top Keywords

analysis
9
anthropogenic contaminants
8
mass spectrometry
8
onsite analysis
8
minimizing transient
4
transient microenvironment-associated
4
microenvironment-associated variability
4
variability analysis
4
environmental
4
analysis environmental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!