Protecting redesigned supercharged ferritin containers against protease by integration into acid-cleavable polyelectrolyte microgels.

J Colloid Interface Sci

Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany. Electronic address:

Published: June 2021

Hypothesis: The application of ferritin containers as a promising drug delivery vehicle is limited by their low bioavailability in blood circulation due to unfavorable environments, such as degradation by protease. The integration of ferritin containers into the polymeric network of microgels through electrostatic interactions is expected to be able to protect ferritin against degradation by protease. Furthermore, a stimuli-responsive microgel system can be designed by employing an acid-degradable crosslinker during the microgel synthesis. This should enable ferritin release in an acidic environment, which will be useful for future drug delivery applications.

Experiments: Nanoparticle/fluorophores-loaded ferritin was integrated into microgels during precipitation polymerization. The integration was monitored by transmission electron microscopy (TEM) and fluorescence microscopy, respectively. After studying ferritin release in acidic solutions, we investigated the stability of ferritin inside microgels against degradation by chymotrypsin.

Findings: About 80% of the applied ferritin containers were integrated into microgels and around 85% and 50% of them could be released in buffer pH 2.5 and 4.0, respectively. Total degradation of the microgels was not achieved due to the self-crosslinking of N-isopropylacrylamide (NIPAM). Finally, we prove that microgels could protect ferritin against degradation by chymotrypsin at 37 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.01.072DOI Listing

Publication Analysis

Top Keywords

ferritin containers
16
ferritin
10
protease integration
8
drug delivery
8
degradation protease
8
protect ferritin
8
ferritin degradation
8
ferritin release
8
release acidic
8
integrated microgels
8

Similar Publications

Iron accumulation and mitochondrial dysfunction in astroglia are reported in Parkinson's disease (PD). Astroglia control iron availability in neurons in which dopamine (DA) synthesis is affected in PD. Despite their intimate relationship the role of DA in astroglial iron homeostasis is limited.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.

Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.

View Article and Find Full Text PDF

Introduction: Cystic echinococcosis (CE), a chronic disabling parasitic zoonosis, poses a great threat to public health and livestock production and causes huge economic losses globally. The commercial Quil-A-adjuvanted Eg95 vaccine was empirically effective for CE control; however, it is expensive and has side effects and insufficient immunity.

Purpose: This study aimed to employ a novel adjuvant consisting of a delivery system and an immune potentiator and assess its adjuvanticity to Eg95 antigen, thereby developing a safe and cost-effective novel vaccine against the disease.

View Article and Find Full Text PDF

Mimicking the superstructures and properties of spherical biological encapsulants such as viral capsids and ferritin offers viable pathways to understand their chiral assemblies and functional roles in living systems. However, stereospecific assembly of artificial polyhedra with mechanical properties and guest-binding attributes akin to biological encapsulants remains a formidable challenge. Here we report the stereospecific assembly of dynamic supramolecular snub cubes from 12 helical macrocycles, which are held together by 144 weak C-H hydrogen bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!