There is now increasing interest in the creation of a more 'circular economy', with a particular aim to eliminate waste - by design, within which products are optimised to be reused, restored or returned. Here, a sulphur functionalised microporous biochar was synthesised from an abundant biomass waste material (cherry kernels), for the selective removal of Pb(II) from landfill leachate as a representative heavy metal. The production process utilises renewable waste material and removes toxic chemicals. Characterisation of the biochar showed that pyrolysis and functionalisation formed an adsorbent with a microporous structure and rich surface chemical functionality. The adsorption process was optimised using a 'response surface methodology - Box-Behnken Design'. Lead removal efficiency approached 99.9% under optimised experimental conditions, i.e., where the solution pH was 6.0, the biochar dose was 4.0 g/L and the contact time was 47 min. The adsorption process was best described using a Freundlich model. The maximum amount of Pb(II) adsorbed was 44.92 mg/g. The main adsorption mechanisms occurred through outer-sphere (electrostatic attraction) and inner-sphere complexation. Desorption studies showed that three successful regeneration cycles (with acidic deionised water) could be used post pyrolysis. The biochar removed 97% of Pb(II) from landfill leachate samples, as compared to 9.4%, and 7.6% for two commercial activated carbon adsorbents. These findings demonstrate the high selectivity of this biochar towards Pb(II) and its applicability even in the presence of high concentrations of many potentially interfering inorganic and organic ions and compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2021.01.037 | DOI Listing |
Environ Geochem Health
January 2025
College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department Chemical and Food Engineering, UFSC, Florianópolis, 88040-900, SC, Brazil.
Produced water management is a significant challenge for the oil and gas industry. Due to the large volumes and complex composition of this water, treatment requires special attention, resulting in high costs for companies in the sector. Naphthenic acids, known for their recalcitrance, add a layer of complexity to the treatment process.
View Article and Find Full Text PDFLangmuir
January 2025
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!