On January 9, 2021, the Minnesota Department of Health (MDH) announced the identification of the SARS-CoV-2 variant of concern (VOC) B.1.1.7, also referred to as 20I/501Y.V1 and VOC 202012/01, in specimens from five persons; on January 25, MDH announced the identification of this variant in specimens from three additional persons. The B.1.1.7 variant, which is reported to be more transmissible than certain other SARS-CoV-2 lineages* (1), was first reported in the United Kingdom in December 2020 (1). As of February 14, 2021, a total of 1,173 COVID-19 cases of the B.1.1.7 variant had been identified in 39 U.S. states and the District of Columbia (2). Modeling data suggest that B.1.1.7 could become the predominant variant in the United States in March 2021 (3).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344980PMC
http://dx.doi.org/10.15585/mmwr.mm7008e1DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 variant
8
mdh announced
8
announced identification
8
b117 variant
8
variant
6
b117
5
identified cases
4
cases sars-cov-2
4
variant b117
4
b117 minnesota
4

Similar Publications

The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, interferon-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization.

View Article and Find Full Text PDF

Background: Epidemics and pandemics have been shown to have widespread effects on health systems. Diabetes is a condition of particular risk during national emergencies such as the COVID-19 pandemic. The aim of this study is to determine the influence of COVID-19 in the patient's diabetes quality management.

View Article and Find Full Text PDF

Ancestral SARS-CoV-2 immune imprinting persists on RBD but not NTD after sequential Omicron infections.

iScience

January 2025

Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Whether Omicron exposures could overcome ancestral SARS-CoV-2 immune imprinting remains controversial. Here we analyzed B cell responses evoked by sequential Omicron infections in vaccinated and unvaccinated individuals. Plasma neutralizing antibody titers against ancestral SARS-CoV-2 and variants indicate that immune imprinting is not consistently induced by inactivated or recombinant protein vaccines.

View Article and Find Full Text PDF

Balancing mitigation strategies for viral outbreaks.

Math Biosci Eng

December 2024

Department of Mathematics & Statistics, Georgia State University, Atlanta, USA.

Control and prevention strategies are indispensable tools for managing the spread of infectious diseases. This paper examined biological models for the post-vaccination stage of a viral outbreak that integrate two important mitigation tools: social distancing, aimed at reducing the disease transmission rate, and vaccination, which boosts the immune system. Five different scenarios of epidemic progression were considered: (ⅰ) the "no control" scenario, reflecting the natural evolution of a disease without any safety measures in place, (ⅱ) the "reconstructed" scenario, representing real-world data and interventions, (ⅲ) the "social distancing control" scenario covering a broad set of behavioral changes, (ⅳ) the "vaccine control" scenario demonstrating the impact of vaccination on epidemic spread, and (ⅴ) the "both controls concurrently" scenario incorporating social distancing and vaccine controls simultaneously.

View Article and Find Full Text PDF

SARS-CoV-2 excretion and genetic evolution in nasopharyngeal and stool samples from primary immunodeficiency and immunocompetent pediatric patients.

Virol J

January 2025

Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.

Background: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.

Materials And Methods: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!