Decasubstituted pillar[5]arenes containing amidopyridine fragments have been synthesized for the first time. As was shown by UV-vis spectroscopy, the pillar[5]arenes with -amidopyridine fragments form supramolecular associates with Cu(II) and Pd(II) cations in methanol in a 2:1 ratio. Using a sol-gel approach these associates are transformed into metallo-supramolecular coordination polymers (supramolecular gels) which were characterized as amorphous powders by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The powders are able to selectively adsorb up to 46% of nitrophenols from water and were incorporated into an electrochemical sensor to selectively recognize them in aqueous acidic solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c03579DOI Listing

Publication Analysis

Top Keywords

metallo-supramolecular coordination
8
coordination polymers
8
cuii pdii
8
pdii cations
8
polymers based
4
based amidopyridine
4
amidopyridine derivatives
4
derivatives pillar[5]arene
4
pillar[5]arene cuii
4
cations synthesis
4

Similar Publications

Construction of Luminescent Terpyridine-Based Metallo-Bowties with Alkyl Chain-Bridged Dimerized Building Blocks.

Chemistry

November 2024

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.

Numerous metallo-supramolecules with well-defined sizes and shapes have been successfully constructed via the strong coordination interaction between terpyridine (TPY) moieties and ruthenium cations. However, the pseudo-octahedral geometry of unit hampers the luminescent properties of such metallo-architectures, thus limiting their applications as optical materials. To address this issue, we herein use a flexible alkyl chain to bridge TPY building blocks, replacing conventional linkage.

View Article and Find Full Text PDF

Heteroleptic (mixed-ligand) coordination cages are of interest as host systems with more structurally and functionally complex cavities than homoleptic architectures. The design of heteroleptic cages, however, is far from trivial. In this work, we experimentally probed the self-assembly of Pd(II) ions with binary ligand combinations in a combinatorial fashion to search for new cis-PdLL' heteroleptic cages.

View Article and Find Full Text PDF

Metallo-Supramolecular Helicates as Surface-Enhanced Raman Scattering (SERS) Substrates with High Tailorability.

Angew Chem Int Ed Engl

September 2024

State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

The exploration of novel functionalized supramolecular coordination complexes (SCCs) can enable new applications in domains that include purification and sensing. In this study, employing a coordination-driven self-assembly strategy, we designed and prepared a series of benzochalcogenodiazole-based metallohelicates as high-efficiency charge-transfer surface-enhanced Raman scattering (SERS) substrates, expanding the range of applications for these metallohelicates. Through structural modifications, including the substitution of single heteroatoms on ligands, replacement of coordinating metals, and alteration of ligand framework linkages, the Raman performance of these metallohelicates as substrates were systematically optimized.

View Article and Find Full Text PDF

Single-particle analysis (SPA) is a fundamental method of cryo-electron microscopy developed to resolve the structures of biological macromolecules. This method has seen significant success in structural biology, yet its potential applications in synthetic chemical systems remain underexplored. In this perspective article, SPA and associated electron microscopy techniques are first briefly introduced.

View Article and Find Full Text PDF

Synthesis, characterisation and antimicrobial activity of supramolecular cobalt-peptide conjugates.

Dalton Trans

July 2024

Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.

Herein, we describe the synthesis and characterisation of four new supramolecular cobalt conjugates of antimicrobial peptides functionalised with terpyridine ligands (L). Peptides were chosen based on the well-established arginine-tryptophan (RW) motif, with terpyridine-derivatized lysine (Lys(tpy)) added to the sequence, or replacing tryptophan residues. Self-assembly of the antimicrobial peptides with Co(BF)·6HO formed exclusively CoL dimers (for peptides with one tpy ligand each) and CoL metallo-macrocycles (for peptides with two tpy ligands for each peptide), which could be 'locked' by oxidation of Co(+II) to Co(+III) with ammonium ceric nitrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!