Aquatic microorganisms in the sediment and water column are closely related; however, their distribution patterns between these two habitats still remain largely unknown. In this study, we compared sediment and water microeukaryotic and bacterial microorganisms in aquaculture ponds from different areas in China, and analyzed the influencing environmental factors as well as the inter-taxa relationships. We found that bacteria were significantly more abundant than fungi in both sediment and water, and the bacterial richness and diversity in sediment were higher than in water in all the sampling areas, but no significant differences were found between the two habitats for microeukaryotes. Bacterial taxa could be clearly separated through cluster analysis between the sediment and water, while eukaryotic taxa at all classification levels could not. Spirochaetea, Deltaproteobacteria, Nitrospirae, Ignavibacteriae, Firmicutes, Chloroflexi, and Lentimicrobiaceae were more abundantly distributed in sediment, while Betaproteobacteria, Alphaproteobacter, Cyanobacteria, Roseiflexaceae, Dinghuibacter, Cryomorphaceae, and Actinobacteria were more abundant in water samples. For eukaryotes, only Cryptomonadales were found to be distributed differently between the two habitats. Microorganisms in sediment were mainly correlated with enzymes related to organic matter decomposition, while water temperature, pH, dissolved oxygen, and nutrient levels all showed significant correlation with the microbial communities in pond water. Intensive interspecific relationships were also found among eukaryotes and bacteria. Together, our results indicated that eukaryotic microorganisms are distributed less differently between sediment and water in aquaculture ponds compared to bacteria. This study provides valuable data for evaluating microbial distributions in aquatic environments, which may also be of practical use in aquaculture pond management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12275-021-0635-5 | DOI Listing |
Swiss J Geosci
December 2024
Department of Surface Waters Research and Management, Eawag, Überlandstrasse 133, Dübendorf, 8600 Switzerland.
Unlabelled: Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
In addition to traditional organophosphate esters (tOPEs), emerging organophosphate esters (eOPEs) have increasingly been detected in the environment, but their risks remain unclear. This study detected 12 tOPEs and 7 eOPEs in surface water, sediment, and suspended particulate matter (SPM) samples from important aquatic habitats and drinking water sources in Yibin (YB), Yichang (YC), Shanghai (SH), and Poyang Lake (PY) within the Yangtze River basin. The total concentration of OPEs (ΣOPEs) in surface water, sediment, and SPM from these four regions were 22.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Universidad Autónoma de Santo Domingo, Facultad de Ciencias, Zona Universitaria, Distrito Nacional, Santo Domingo, Dominican Republic.
Impacts of the acid mine drainage (AMD) remediation are investigated on the largest gold mine in Latin America, located in the Dominican Republic. Geochemical analysis of suspended matter in water performed in 2022 on water bodies located downstream to the mine, namely, the Margajita River and Lake Hatillo, are compared with analyses made in 2007, before the AMD remediation. The results for the Margajita River show a strong decrease in heavy metal and metalloid concentrations in the dissolved phase for Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sb, and Pb (between 89.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, 44600, Nepal.
Freshwater ecosystems, including high-altitude lakes, can be affected by trace metal pollution derived from a mix of natural sources and anthropogenic activities. These pollutants often collect in surface sediments, with notable concentrations in the deeper areas of lakes. To evaluate the environmental risk associated with metal contaminated sediment in Rara Lake, southern Himalaya, surface sediment samples were systematically collected in November 2018, with a subsequent specific emphasis on determinations of trace element concentrations.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Geography, National Taiwan Normal University, Taipei, Taiwan.
The impact of flood diversion channels on river sediment transport has been rarely reported. This study uses the Yuanshantze flood diversion tunnel (YFDT), which was commissioned in July 2005 in Taiwan, as an example. This study calculates the sediment transport in the Keelung River from 1997 to 2018 by using seasonal rating curves, in the form of aQb.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!