Objectives: To evaluate the reduction of artifacts from cardiac implantable electronic devices (CIEDs) by virtual monoenergetic images (VMI), metal artifact reduction (MAR) algorithms, and their combination (VMI) derived from spectral detector CT (SDCT) of the chest compared to conventional CT images (CI).

Methods: In this retrospective study, we included 34 patients (mean age 74.6 ± 8.6 years), who underwent a SDCT of the chest and had a CIED in place. CI, MAR, VMI, and VMI (10 keV increment, range: 100-200 keV) were reconstructed. Mean and standard deviation of attenuation (HU) among hypo- and hyperdense artifacts adjacent to CIED generator and leads were determined using ROIs. Two radiologists qualitatively evaluated artifact reduction and diagnostic assessment of adjacent tissue.

Results: Compared to CI, MAR and VMI ≥ 100 keV significantly increased attenuation in hypodense and significantly decreased attenuation in hyperdense artifacts at CIED generator and leads (p < 0.05). VMI ≥ 100 keV alone only significantly decreased hyperdense artifacts at the generator (p < 0.05). Qualitatively, VMI ≥ 100 keV, MAR, and VMI ≥ 100 keV provided significant reduction of hyper- and hypodense artifacts resulting from the generator and improved diagnostic assessment of surrounding structures (p < 0.05). Diagnostic assessment of structures adjoining to the leads was only improved by MAR and VMI 100 keV (p < 0.05), whereas keV values ≥ 140 with and without MAR significantly worsened diagnostic assessment (p < 0.05).

Conclusions: The combination of VMI and MAR as well as MAR as a standalone approach provides effective reduction of artifacts from CIEDs. Still, higher keV values should be applied with caution due to a loss of soft tissue and vessel contrast along the leads.

Key Points: • The combination of VMI and MAR as well as MAR as a standalone approach enables effective reduction of artifacts from CIEDs. • Higher keV values of both VMI and VMI at CIED leads should be applied with caution since diagnostic assessment can be hampered by a loss of soft tissue and vessel contrast. • Recommended keV values for CIED generators are between 140 and 200 keV and for leads around 100 keV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379133PMC
http://dx.doi.org/10.1007/s00330-021-07746-8DOI Listing

Publication Analysis

Top Keywords

100 kev
24
diagnostic assessment
20
reduction artifacts
16
mar vmi
16
vmi ≥
16
≥ 100
16
kev values
16
vmi
13
kev
13
combination vmi
12

Similar Publications

Ab Initio Study of Electron Capture in Collisions of Protons with CO Molecules.

Molecules

December 2024

Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Ab initio calculations of cross sections for electron capture by protons in collisions with CO are carried out at energies between 100 eV/u and 50 keV/u, employing a semiclassical method within the Franck-Condon framework. The scattering wave function is expanded in a set of ab initio electronic wave functions of the HCO supermolecule. The calculation is performed on several trajectory orientations to obtain orientation-averaged total cross sections.

View Article and Find Full Text PDF

Objectives: To investigate the image quality and diagnostic performance with ultra-low dose dual-layer detector spectral CT (DLSCT) by various reconstruction techniques for evaluation of pulmonary nodules.

Materials And Methods: Between April 2023 and December 2023, patients with suspected pulmonary nodules were prospectively enrolled and underwent regular-dose chest CT (RDCT; 120 kVp/automatic tube current) and ultra-low dose CT (ULDCT; 100 kVp/10 mAs) on a DLSCT scanner. ULDCT was reconstructed with hybrid iterative reconstruction (HIR), electron density map (EDM), and virtual monoenergetic images at 40 keV and 70 keV.

View Article and Find Full Text PDF

Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes a 5 mm CdTe Timepix3 detector and evaluates its feasibility as a single-layer Compton camera.

View Article and Find Full Text PDF

: Fibroblast activation protein (FAP)-targeted theranostic radiopharmaceuticals have shown desired tumor-to-background organ selectivity due to the ubiquitous presence of FAP within the tumor microenvironment. However, suboptimal tumor retention and fast clearance have hindered their use to deliver effective cancer therapies. With well-documented FAP-targeting moieties and linkers appending them to optimal chelators, the development of copper radiopharmaceuticals has attracted considerable interest, given the fact that an ideal theranostic pair of copper radionuclides (Cu: t = 12.

View Article and Find Full Text PDF

Improving Diagnostic Accuracy in Acute Pulmonary Embolism: Insights from Spectral Dual-energy CT.

Curr Med Imaging

January 2025

Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital,3002 SunGangXi Road, Shenzhen, China.

Purpose: This study aims to evaluate the clinical efficacy of spectral dual-energy detector computed tomography (SDCT) and its associated parameters in diagnosing acute pulmonary embolism (APE).

Methods: Retrospective analysis of imaging data from 86 APE-diagnosed patients using SDCT was conducted. Virtual monoenergetic images (VMIs) at 40, 70, and 100 KeV, Iodine concentration (IC) maps, Electron Cloud Density Map (ECDM), Effective atomic number (Z-eff) maps, and Hounsfield unit attenuation plots (VMI slope) were reconstructed from pulmonary artery phase CT images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!