The research on metal halide perovskite light-emitting diodes (PeLEDs) with green and infrared emission has demonstrated significant progress in achieving higher functional performance. However, the realization of stable pure-blue (≈470 nm wavelength) PeLEDs with increased brightness and efficiency still constitutes a considerable challenge. Here, a novel acid etching-driven ligand exchange strategy is devised for achieving pure-blue emitting small-sized (≈4 nm) CsPbBr perovskite quantum dots (QDs) with ultralow trap density and excellent stability. The acid, hydrogen bromide (HBr), is employed to etch imperfect [PbBr ] octahedrons, thereby removing surface defects and excessive carboxylate ligands. Subsequently, didodecylamine and phenethylamine are successively introduced to bond the residual uncoordinated sites of the QDs and attain in situ exchange with the original long-chain organic ligands, resulting in near-unity quantum yield (97%) and remarkable stability. The QD-based PeLEDs exhibit pure-blue electroluminescence at 470 nm (corresponding to the Commission Internationale del'Eclairage (CIE) (0.13, 0.11) coordinates), an external quantum efficiency of 4.7%, and a remarkable luminance of 3850 cd m , which is the highest brightness reported so far for pure-blue PeLEDs. Furthermore, the PeLEDs exhibit robust durability, with a half-lifetime exceeding 12 h under continuous operation, representing a record performance value for blue PeLEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202006722DOI Listing

Publication Analysis

Top Keywords

perovskite quantum
8
quantum dots
8
ultralow trap
8
trap density
8
acid etching-driven
8
etching-driven ligand
8
ligand exchange
8
stable pure-blue
8
light-emitting diodes
8
peleds exhibit
8

Similar Publications

The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs' solid thin film and the chlorinated vapor phase.

View Article and Find Full Text PDF

Paper is an ideal platform for creating flexible and eco-friendly electronic systems. Leveraging the synergistic integration of zero- and two-dimensional materials, it unfolds a broad spectrum of applications within the realm of the Internet of Things (IoT), spanning from wearable electronics to smart packaging solutions. However, for paper without a polymer coating, the rough and porous nature presents significant challenges as a substrate for electronics, and the absence of well-established fabrication methods further hinders its application in wearable electronics.

View Article and Find Full Text PDF

Currently, CsPbI quantum dots (QDs) based light-emitting diodes (LEDs) are not well suited for achieving high efficiency and operational stability due to the binary-precursor method and purification process, which often results in the nonstoichiometric ratio of Cs/Pb/I. This imbalance leads to amounts of iodine vacancies, inducing severe non-radiative recombination processes and phase transitions of QDs. Herein, red-emitting CsPbI QDs are reported with excellent optoelectronic properties and stability based on the synergistic effects of halide-rich modulation passivation and lattice repair.

View Article and Find Full Text PDF

This study investigates the photophysical behaviour of Mn/Fe and Mn/Sn co-doped CsPbCl3 perovskite nanocrystals (NCs) to explore carrier dynamics and dopant interactions. Using gated photoluminescence (PL) and temperature-dependent measurements, we elucidate the impact of dopant chemistry on exciton behaviour, focusing on vibrationally assisted delayed fluorescence (VADF) and energy transfer mechanisms. The efficiency of VADF is influenced by factors such as the bandgap, temperature, quantum confinement, and host composition.

View Article and Find Full Text PDF

Molecular ferroelectric self-assembled interlayer for efficient perovskite solar cells.

Nat Commun

January 2025

State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, PR China.

The interfacial molecular dipole enhances the photovoltaic performance of perovskite solar cells (PSCs) by facilitating improved charge extraction. However, conventional self-assembled monolayers (SAMs) face challenges like inadequate interface coverage and weak dipole interactions. Herein, we develop a strategy using a self-assembled ferroelectric layer to modify the interfacial properties of PSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!