Objective: To outline a practical method of performing prostate cancer radiotherapy in patients with bilateral metal hip prostheses with the standard resources available in a modern general hospital. The proposed workflow is based exclusively on magnetic resonance imaging (MRI) to avoid computed tomography (CT) artifacts.

Case Description: This study concerns a 73-year-old man with bilateral hip prostheses with an elevated risk prostate cancer. Magnetic resonance images with assigned electron densities were used for planning purposes, generating a synthetic CT (sCT). Imaging acquisition was performed with an optimized Dixon sequence on a 1.5T MRI scanner. The images were contoured by autosegmentation software, based on an MRI database of 20 patients. The sCT was generated assigning averaged electron densities to each contour. Two volumetric modulated arc therapy plans, a complete arc and a partial one, where the beam entrances through the prostheses were avoided for about 50° on both sides, were compared. The feasibility of matching daily cone beam CT (CBCT) with MRI reference images was also tested by visual evaluations of different radiation oncologists.

Conclusions: The use of magnetic resonance images improved accuracy in targets and organs at risk (OARs) contouring. The complete arc plan was chosen because of 10% lower mean and maximum doses to prostheses with the same planning target volume coverage and OAR sparing. The image quality of the match between performed CBCTs and MRI was considered acceptable. The proposed method seems promising to improve radiotherapy treatments for this complex category of patients.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0300891621997549DOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
hip prostheses
12
magnetic resonance
12
bilateral metal
8
metal hip
8
resonance images
8
electron densities
8
complete arc
8
mri
6
prostheses
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!