Objectives: Diagnostic process of mitochondrial disorders (MD) is challenging because of the clinical variability and genetic heterogeneity of these conditions. Next-Generation Sequencing (NGS) technology offers a high-throughput platform for nuclear MD.
Methods: We included 59 of 72 patients that undergone WES and targeted exome sequencing panel suspected to have potential PMDs. Patients who were included in the analysis considering the possible PMD were reviewed retrospectively and scored according to the Mitochondrial Disease Criteria Scale.
Results: Sixty-one percent of the patients were diagnosed with whole-exome sequencing (WES) (36/59) and 15% with targeted exome sequencing (TES) (9/59). Patients with MD-related gene defects were included in the mito group, patients without MD-related gene defects were included in the nonmito group, and patients in whom no etiological cause could be identified were included in the unknown etiology group. In 11 out of 36 patients diagnosed with WES, a TES panel was applied prior to WES. In 47 probands in 39 genes () (20 mito group, 19 nonmito group) 59 variants (31 mito group, 18 nonmito group) were detected. Seven novel variants in the mito group (), nine novel variants in the nonmito group () were detected.
Conclusions: We explored the feasibility of identifying pathogenic alleles using WES and TES in MD. Our results show that WES is the primary method of choice in the diagnosis of MD until at least all genes responsible for PMD are found and are highly effective in facilitating the diagnosis process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/jpem-2020-0410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!