3-Mercaptopropionic acid administration into the caudate-putamen of the rat provokes dyskinesia.

Pharmacol Biochem Behav

Nathan S. Kline Institute for Psychiatric Research, Center for Neurochemistry, New York, NY 10035.

Published: March 1988

The unilateral administration of 3-mercaptopropionic acid (MPA) through an implanted guide cannula into the caudate-putamen produced dyskinesia in the rat. Striatal GABA and dopamine were decreased and the dopamine metabolites 3,4-dihydroxyphenylacetic and homovanillic acid were increased on the MPA-injected side at 2-10 min after the onset of dyskinesia. The dyskinetic movements were blocked by GABA or alpha-aminooxaloacetic acid but not by glycine or haloperidol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0091-3057(88)90014-7DOI Listing

Publication Analysis

Top Keywords

3-mercaptopropionic acid
8
acid administration
4
administration caudate-putamen
4
caudate-putamen rat
4
rat provokes
4
provokes dyskinesia
4
dyskinesia unilateral
4
unilateral administration
4
administration 3-mercaptopropionic
4
acid mpa
4

Similar Publications

A double probe-based fluorescence sensor array to detect rare earth element ions.

Analyst

January 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.

There is a persistent need for effective sensors to detect rare earth element ions (REEIs) due to their effects on human health and the environment. Thus, a simple and efficient fluorescence-based detection method for REEIs that offers convenience, flexibility, versatility, and efficiency is essential for ensuring environmental safety, food quality, and biomedical applications. In this study, 6-aza-2-thiothymine-gold nanoclusters (ATT-AuNCs) and bovine serum albumin/3-mercaptopropionic acid-AuNCs (BSA/MPA-AuNCs) were utilized to detect 14 REEIs (Sc, Gd, Lu, Y, Ce, Pr, Yb, Dy, Tm, Sm, Ho, Tb, La, and Eu), resulting in the creation of a simple, sensitive, and multi-target fluorescence sensor array detection platform.

View Article and Find Full Text PDF

Ligand engineering boosts catalase-like activity of gold nanoclusters for cascade reactions combined with glucose oxidase in ZIF-8 matrix.

Anal Chim Acta

February 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:

Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.

View Article and Find Full Text PDF

Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film.

Polymers (Basel)

December 2024

Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.

A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.

View Article and Find Full Text PDF

Thiols, including Cysteine (CYS) and Glutathione (GSH), play pivotal roles in numerous physiological processes as they are integral components of many essential biomolecules and are found abundantly in foods such as additives and antioxidants. Any deviations in thiol concentrations can disrupt normal physiological functions, affecting the body's metabolism and potentially leading to diseases such as Alzheimer's and Parkinson's diseases, etc. Consequently, the imperative need for developing reliable and robust techniques for thiol analysis is crucial for early disease detection and ensuring food safety.

View Article and Find Full Text PDF

Diazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!