Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. We measured pre-dawn and midday leaf water potential (Ψ ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78-100%). This is in contrast to trees with partial canopy die-back (30-70% canopy die-back: 72-78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25-31% native embolism). Midday Ψ was significantly more negative in trees exhibiting partial canopy die-back (-2.7 to -6.3 MPa), compared with relatively healthy trees (-2.1 to -4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.17298 | DOI Listing |
Sci Total Environ
February 2024
Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, Karlstr. 11, 76133 Karlsruhe, Germany; Institute of Geography and Geoecology (IfGG), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.
The Rhine River valley of Germany has been facing recurrent and intense spells of drought and heatwaves threatening the health of trees in peri-urban forests. Crown damage intensified by climate change accelerates tree mortality, threatening its ecological, economic, and social benefits; however, the pattern of crown die-back in peri-urban forests remained unclear. We performed a field inventory to estimate the crown die-back of 2578 trees of 51 species from 68 randomly selected peri-urban forest plots in Karlsruhe region on the right bank of the Rhine, after the catastrophic summer heatwave and drought of 2018.
View Article and Find Full Text PDFFront Plant Sci
October 2022
Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
Drought-induced forest canopy die-back and tree mortality have been commonly recorded in the lithoid mountainous regions of northern China. However, the capacity of trees to regulate their carbon and water balance in response to drought remains inadequately understood. We measured tree growth, intrinsic water use efficiency (iWUE), vulnerability, and canopy health during drought events using dendrochronology, C isotope measurements, and a tree canopy health survey in a mixed plantation of and .
View Article and Find Full Text PDFFront Plant Sci
February 2022
Center for Applied Plant Sciences, The Ohio State University, Wooster, OH, United States.
Almond [ (Mill.) D.A.
View Article and Find Full Text PDFNew Phytol
May 2021
Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined.
View Article and Find Full Text PDFPlant Dis
January 2021
University of California Cooperative Extension Humboldt and Del Norte, Arcata, California, United States;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!