Effector T cells leave the lymph nodes armed with specialized functional attributes. Their antigenic targets may be located anywhere in the body, posing the ultimate challenge: how to efficiently identify the target tissue, navigate through a complex tissue matrix and, ultimately, locate the immunological insult. Recent advances in real-time in situ imaging of effector T cell migratory behaviour have revealed a great degree of mechanistic plasticity that enables effector T cells to push and squeeze their way through inflamed tissues. This process is shaped by an array of 'stop' and 'go' guidance signals including target antigens, chemokines, integrin ligands and the mechanical cues of the inflamed microenvironment. Effector T cells must sense and interpret these competing signals to correctly position themselves to mediate their effector functions for complete and durable responses in infectious disease and malignancy. Tuning T cell migration therapeutically will require a new understanding of this complex decision-making process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380693 | PMC |
http://dx.doi.org/10.1038/s41577-021-00507-0 | DOI Listing |
J Infect Dev Ctries
December 2024
Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
Co-inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1), known as immune checkpoints, regulate the activity of T and myeloid cells during chronic viral infections and are well-established for their roles in cancer therapy. However, their involvement in chronic bacterial infections, particularly those caused by pathogens endemic to developing countries, such as Mycobacterium tuberculosis (Mtb), remains incompletely understood. Cytokine microenvironment determines the expression of co-inhibitory molecules in tuberculosis: Results indicate that the cytokine IL-12, in the presence of Mtb antigens, can enhance the expression of co-inhibitory molecules while preserving the effector and memory phenotypes of CD4+ T cells.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
High concentrations of neutrophil degranulation products in the plasma and thrombi are poor prognostic indicators in patients with acute ischemic stroke (AIS). This study aimed to identify candidate effectors capable of mediating neutrophil degranulation post-AIS, and to reveal their underlying epigenetic mechanisms. Microarrays and ChIP-seq were applied to analyze the neutrophils of patients with AIS.
View Article and Find Full Text PDFDialogues Clin Neurosci
December 2025
Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
Introduction: Depression includes different phenotypes. Modern-type depression (MTD) is a gateway disorder to pathological social withdrawal, known as hikikomori. Adverse childhood experiences (ACEs) are also important aetiologies of depression.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
The YhaJ transcription factor responds to dinitrophenol (DNT) and its metabolic products. The YhaJ-involving cells have been exploited for whole-cell biosensors of soil-buried landmines. Such biosensors would decrease the damage to personnel who approach landmine fields.
View Article and Find Full Text PDFExp Biol Med (Maywood)
January 2025
Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama.
Macrophages are effector cells of the immune system and essential modulators of immune responses. Different functional phenotypes of macrophages with specific roles in the response to stimuli have been described. The C57BL/6 and BALB/c mouse strains tend to selectively display distinct macrophage activation states in response to pathogens, namely, the M1 and M2 phenotypes, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!