The fundamental building blocks of the proton-quarks and gluons-have been known for decades. However, we still have an incomplete theoretical and experimental understanding of how these particles and their dynamics give rise to the quantum bound state of the proton and its physical properties, such as its spin. The two up quarks and the single down quark that comprise the proton in the simplest picture account only for a few per cent of the proton mass, the bulk of which is in the form of quark kinetic and potential energy and gluon energy from the strong force. An essential feature of this force, as described by quantum chromodynamics, is its ability to create matter-antimatter quark pairs inside the proton that exist only for a very short time. Their fleeting existence makes the antimatter quarks within protons difficult to study, but their existence is discernible in reactions in which a matter-antimatter quark pair annihilates. In this picture of quark-antiquark creation by the strong force, the probability distributions as a function of momentum for the presence of up and down antimatter quarks should be nearly identical, given that their masses are very similar and small compared to the mass of the proton. Here we provide evidence from muon pair production measurements that these distributions are considerably different, with more abundant down antimatter quarks than up antimatter quarks over a wide range of momenta. These results are expected to revive interest in several proposed mechanisms for the origin of this antimatter asymmetry in the proton that had been disfavoured by previous results, and point to future measurements that can distinguish between these mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-021-03282-z | DOI Listing |
Nature
February 2021
Physics Division, Argonne National Laboratory, Lemont, IL, USA.
The fundamental building blocks of the proton-quarks and gluons-have been known for decades. However, we still have an incomplete theoretical and experimental understanding of how these particles and their dynamics give rise to the quantum bound state of the proton and its physical properties, such as its spin. The two up quarks and the single down quark that comprise the proton in the simplest picture account only for a few per cent of the proton mass, the bulk of which is in the form of quark kinetic and potential energy and gluon energy from the strong force.
View Article and Find Full Text PDFThe charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964, and CP violation in the weak interactions of quarks was soon established. Sakharov proposed that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2019
Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
We review here a new scenario of electroweak baryogenesis where the local energy released in the gravitational collapse to form primordial black holes (PBHs) at the quark-hadron (QCD) epoch drives over-the-barrier sphaleron transitions in a far from equilibrium environment with just the standard model CP violation. Baryons are efficiently produced in relativistic collisions around the black holes and soon redistribute to the rest of the universe, generating the observed matter-antimatter asymmetry well before primordial nucleosynthesis. Therefore, in this scenario there is a common origin of both the dark matter to baryon ratio and the photon to baryon ratio.
View Article and Find Full Text PDFPhys Rev Lett
April 2019
Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories.
View Article and Find Full Text PDFLarge experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!