The concepts of brain reserve and cognitive reserve were recently suggested as valuable predictors of stroke outcome. To test this hypothesis, we used age, years of education and lesion size as clinically feasible coarse proxies of brain reserve, cognitive reserve, and the extent of stroke pathology correspondingly. Linear and logistic regression models were used to predict cognitive outcome (Montreal Cognitive Assessment) and stroke-induced impairment and disability (NIH Stroke Scale; modified Rankin Score) in a sample of 104 chronic stroke patients carefully controlled for potential confounds. Results revealed 46% of explained variance for cognitive outcome (p < 0.001) and yielded a significant three-way interaction: Larger lesions did not lead to cognitive impairment in younger patients with higher education, but did so in younger patients with lower education. Conversely, even small lesions led to poor cognitive outcome in older patients with lower education, but didn't in older patients with higher education. We observed comparable three-way interactions for clinical scores of stroke-induced impairment and disability both in the acute and chronic stroke phase. In line with the hypothesis, years of education conjointly with age moderated effects of lesion on stroke outcome. This non-additive effect of cognitive reserve suggests its post-stroke protective impact on stroke outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904829PMC
http://dx.doi.org/10.1038/s41598-021-83927-1DOI Listing

Publication Analysis

Top Keywords

cognitive reserve
12
stroke outcome
8
brain reserve
8
reserve cognitive
8
cognitive outcome
8
reserve
5
stroke
5
cognitive
5
interaction cognitive
4
reserve age
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!