Because disease-associated microglia (DAM) and disease-associated astrocytes (DAA) are involved in the pathophysiology of Alzheimer's disease (AD), we systematically identified molecular networks between DAM and DAA to uncover novel therapeutic targets for AD. Specifically, we develop a network-based methodology that leverages single-cell/nucleus RNA sequencing data from both transgenic mouse models and AD patient brains, as well as drug-target network, metabolite-enzyme associations, the human protein-protein interactome, and large-scale longitudinal patient data. Through this approach, we find both common and unique gene network regulators between DAM (i.e., , , and ) and DAA (i.e., , , and ) that are significantly enriched by neuro-inflammatory pathways and well-known genetic variants (i.e., ). We identify shared immune pathways between DAM and DAA, including Th17 cell differentiation and chemokine signaling. Last, integrative metabolite-enzyme network analyses suggest that fatty acids and amino acids may trigger molecular alterations in DAM and DAA. Combining network-based prediction and retrospective case-control observations with 7.2 million individuals, we identify that usage of fluticasone (an approved glucocorticoid receptor agonist) is significantly associated with a reduced incidence of AD (hazard ratio [HR] = 0.86, 95% confidence interval [CI] 0.83-0.89, < 1.0 × 10). Propensity score-stratified cohort studies reveal that usage of mometasone (a stronger glucocorticoid receptor agonist) is significantly associated with a decreased risk of AD (HR = 0.74, 95% CI 0.68-0.81, < 1.0 × 10) compared to fluticasone after adjusting age, gender, and disease comorbidities. In summary, we present a network-based, multimodal methodology for single-cell/nucleus genomics-informed drug discovery and have identified fluticasone and mometasone as potential treatments in AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494225 | PMC |
http://dx.doi.org/10.1101/gr.272484.120 | DOI Listing |
Exp Mol Med
December 2023
Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
The molecular changes that occur with the progression of Alzheimer's disease (AD) are well known, but an understanding of the spatiotemporal heterogeneity of changes in the brain is lacking. Here, we investigated the spatially resolved transcriptome in a 5XFAD AD model at different ages to understand regional changes at the molecular level. Spatially resolved transcriptomic data were obtained from 5XFAD AD models and age-matched control mice.
View Article and Find Full Text PDFCell Rep
October 2023
Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA 94143, USA. Electronic address:
Apolipoprotein E4 (APOE4) is an important driver of Tau pathology, gliosis, and degeneration in Alzheimer's disease (AD). Still, the mechanisms underlying these APOE4-driven pathological effects remain elusive. Here, we report in a tauopathy mouse model that APOE4 promoted the nucleocytoplasmic translocation and release of high-mobility group box 1 (HMGB1) from hippocampal neurons, which correlated with the severity of hippocampal microgliosis and degeneration.
View Article and Find Full Text PDFNat Neurosci
March 2023
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Complex diseases are characterized by spatiotemporal cellular and molecular changes that may be difficult to comprehensively capture. However, understanding the spatiotemporal dynamics underlying pathology can shed light on disease mechanisms and progression. Here we introduce STARmap PLUS, a method that combines high-resolution spatial transcriptomics with protein detection in the same tissue section.
View Article and Find Full Text PDFJ Hepatol
July 2022
Interdisciplinary Department of Medicine, Università degli Studi di Bari "Aldo Moro", Bari, Italy. Electronic address:
HCV hijacks many host metabolic processes in an effort to aid viral replication. The resulting hepatic metabolic dysfunction underpins many of the hepatic and extrahepatic manifestations of chronic hepatitis C (CHC). However, the natural history of CHC is also substantially influenced by the host metabolic status: obesity, insulin resistance and hepatic steatosis are major determinants of CHC progression toward hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!