Background: The non-receptor tyrosine kinase Abelson (Abl) is a key player in oncogenesis, with kinase inhibitors serving as paradigms of targeted therapy. Abl also is a critical regulator of normal development, playing conserved roles in regulating cell behavior, brain development and morphogenesis. Drosophila offers a superb model for studying Abl's normal function, because, unlike mammals, there is only a single fly Abl family member. In exploring the mechanism of action of multi-domain scaffolding proteins like Abl, one route is to define the roles of their individual domains. Research into Abl's diverse roles in embryonic morphogenesis revealed many surprises. For instance, kinase activity, while important, is not crucial for all Abl activities, and the C-terminal F-actin binding domain plays a very modest role. This turned our attention to one of Abl's least understood features-the long intrinsically-disordered region (IDR) linking Abl's kinase and F-actin binding domains. The past decade revealed unexpected, important roles for IDRs in diverse cell functions, as sites of posttranslational modifications, mediating multivalent interactions and enabling assembly of biomolecular condensates via phase separation. Previous work deleting conserved regions in Abl's IDR revealed an important role for a PXXP motif, but did not identify any other essential regions.
Methods: Here we extend this analysis by deleting the entire IDR, and asking whether Abl∆IDR rescues the diverse roles of Abl in viability and embryonic morphogenesis in Drosophila.
Results: This revealed that the IDR is essential for embryonic and adult viability, and for cell shape changes and cytoskeletal regulation during embryonic morphogenesis, and, most surprisingly, revealed a role in modulating protein stability.
Conclusion: Our data provide new insights into the role of the IDR in an important signaling protein, the non-receptor kinase Abl, suggesting that it is essential for all aspects of protein function during embryogenesis, and revealing a role in protein stability. These data will stimulate new explorations of the mechanisms by which the IDR regulates Abl stability and function, both in Drosophila and also in mammals. They also will stimulate further interest in the broader roles IDRs play in diverse signaling proteins. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905622 | PMC |
http://dx.doi.org/10.1186/s12964-020-00703-w | DOI Listing |
Biol Open
February 2025
Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA.
The network of proteins at the interface between cell-cell adherens junctions and the actomyosin cytoskeleton provides robust yet dynamic connections that facilitate cell shape change and motility. While this was initially thought to be a simple linear connection via classic cadherins and their associated catenins, we now have come to appreciate that many more proteins are involved, providing robustness and mechanosensitivity. Defining the full set of proteins in this network remains a key objective in our field.
View Article and Find Full Text PDFPLoS Biol
January 2025
School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom.
Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos.
View Article and Find Full Text PDFReprod Domest Anim
February 2025
Veterinary Embryology Laboratory, Professional School of Veterinary Medicine, Universidad Nacional de San Antonio Abad del Cusco, Sicuani-Cusco, Peru.
Currently, incubators with a time-lapse system are widely used for in vitro embryo production in several species, however, their effect on alpaca embryo development compared to conventional incubators remains unknown. The aim of this study was to compare early in vitro embryo development in alpacas using a time-lapse incubator system versus a conventional incubator. Ovaries were obtained from a slaughterhouse and 1048 cumulus-oocyte complexes (COCs) were collected and in vitro matured for 26 h in either a time-lapse system (n = 542) or a conventional incubator (n = 542).
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China.
Cell fate determination at the chromatin level is not fully comprehended. Here, we report that c-JUN acts on chromatin loci to limit mesoderm cell fate specification as cells exit pluripotency. Although c-JUN is widely expressed across various cell types in early embryogenesis, it is not essential for maintaining pluripotency.
View Article and Find Full Text PDFTrop Biomed
December 2024
Department of Entomology and Plant Pathology, Khon Kaen University, Thailand Mittapap Road, Khon Kaen, Khon Kaen, 40002, Thailand.
This research aimed to find indigenous plants and suitable solvents to extract substances with the capacity to suppress the immature stages of house fly populations in animal farms and urban areas. Seven native Thai plants were tested: Alstonia scholaris (L.) R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!