Resistance to cytarabine is an important cause of therapy failure in persons with acute myeloid leukemia (AML). Deoxycytidine kinase, encoded by DCK, catalyzes phosphorylation of cytarabine to cytarabine monophosphate, a necessary step for eventual incorporation of cytarabine triphosphate into DNA and for clinical efficacy. Whether DCK mutations make AML cells resistant to cytarabine is controversial. We studied DCK mutations and messenger RNA (mRNA) concentrations in leukemia cells from 10 subjects with AML who received cytarabine-based therapy and relapsed and in 2 artificially induced cytarabine-resistant AML cell lines. DCK mutations were detected in 4 subjects with AML relapsing after achieving a complete remission and receiving high-dose cytarabine postremission therapy. Most mutations were in exons 4-6 and were not present before therapy. DCK was also mutated in cytarabine-resistant but not parental AML cell lines. DCK mRNA concentrations were significantly decreased in cytarabine-resistant K562 and SHI-1 cells compared with cytarabine-sensitive parental cells. Mutation frequency of DCK and mRNA concentration did not correlate with the extent of cytarabine resistance indicating other factors operate. Overexpression of wild-type DCK restored cytarabine sensitivity to previously resistant leukemia cell lines. Our data contribute to the understanding of cytarabine resistance in persons with AML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000513696 | DOI Listing |
Target Oncol
November 2024
Division of Medical Oncology, The Ohio State University, Columbus, OH, USA.
Chondrosarcomas, a rare form of bone sarcomas with multiple subtypes, pose a pressing clinical challenge for patients with advanced or metastatic disease. The lack of US Food and Drug Administration (FDA)-approved medications underscores the urgent need for further research and development in this area. Patients and their families face challenges as there are no systemic therapeutic options available with substantial effectiveness.
View Article and Find Full Text PDFBMC Genomics
November 2024
Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland.
Alterations in splicing patterns of leukemic cells have a functional impact and influence most cellular processes since aberrantly spliced isoforms can provide a proliferative advantage, enable to evade apoptosis, induce metabolic reprogramming, change cell signaling and antitumor immune response, or develop drug resistance. In this Review, we first characterize the general mechanism of mRNA processing regulation with a focus on the role of splicing factors, which are commonly mutated in blood neoplasms. Next, we provide a comprehensive summary on the current understanding of alternative splicing events, which confer resistance to targeted treatment strategies and immunotherapy.
View Article and Find Full Text PDFAm J Ophthalmol
January 2025
Center for the Genetics of Host Defense (S.L., E.M.Y.M., B.B.), UT Southwestern Medical Center, Dallas, Texas, USA.
Purpose: To determine if Lmln, a Zinc-metallopeptidase, is important for retinal homeostasis.
Design: Basic research in mouse models of retinal degeneration.
Methods: Combining an unbiased N-ethyl-N-nitrosourea mutagenesis pipeline in mice with optical coherence tomography (OCT) screening and automated meiotic mapping, we identified an allele (nemeth) that seemed to be associated with outer nuclear layer (ONL) thinning.
Nat Synth
March 2024
Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
Nimbolide, a ring seco-C limonoid natural product, was recently found to inhibit the poly(ADP)-ribosylation (PARylation)-dependent ubiquitin E3 ligase RNF114. In doing so, it induces the 'supertrapping' of both PARylated PARP1 and PAR-dependent DNA-repair factors. PARP1 inhibitors have reshaped the treatment of cancer patients with germline / mutations partly through the PARP1 trapping mechanism.
View Article and Find Full Text PDFCell Oncol (Dordr)
October 2024
Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Gasthuisberg O&N1, Herestraat 49, PO-box 901, Leuven, B-3000, Belgium.
Purpose: Uterine serous carcinoma (USC) is generally associated with poor prognosis due to a high recurrence rate and frequent treatment resistance; hence, there is a need for improved therapeutic strategies. Molecular analysis of USC identified several molecular markers, useful to improve current treatments or identify new druggable targets. PPP2R1A, encoding the Aα subunit of the tumor suppressive Ser/Thr phosphatase PP2A, is mutated in up to 40% of USCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!