Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Elite athletes experience chronic sleep insufficiency due to training and competition schedules. However, there is little research on sleep and caffeine use of elite youth athletes and a need for a more nuanced understanding of their sleep difficulties. This study aimed to (1) examine the differences in sleep characteristics of elite youth athletes by individual and team sports, (2) study the associations between behavioral risk factors associated with obstructive sleep apnea and caffeine use with sleep quality, and (3) characterize the latent sleep profiles of elite youth athletes to optimize the sleep support strategy.
Methods: A group (N = 135) of elite national youth athletes completed a self-administered questionnaire consisting of the Pittsburgh Sleep Quality Index (PSQI) and questions pertaining to obstructive sleep apnea, napping behavior, and caffeine use. K-means clustering was used to characterize unique sleep characteristic subgroups based on PSQI components.
Results: Athletes reported 7.0 (SD = 1.2) hours of sleep. Out of the total group, 45.2% of the athletes had poor quality sleep (PSQI global >5), with team-sport athletes reporting significantly poorer sleep quality than individual-sport athletes. Multiple logistic regression analysis indicated that sport type significantly correlated with poor sleep quality. The K-means clustering algorithm classified athletes' underlying sleep characteristics into 4 clusters to efficiently identify athletes with similar underlying sleep issues to enhance interventional strategies.
Conclusion: These findings suggest that elite youth team-sport athletes are more susceptible to poorer sleep quality than individual-sport athletes. Clustering methods can help practitioners characterize sleep-related problems and develop efficient athlete support strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/ijspp.2020-0675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!