Sensitive quantitation of ESR1 mutations in cell-free DNA from breast cancer patients using base-specific invasive reaction assisted qPCR.

J Pharm Biomed Anal

Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.

Published: April 2021

Acquired estrogen receptor 1 (ESR1) mutation is being promoted as a key mechanism of resistance to endocrine therapies in breast cancers. It is significative to monitor ESR1 mutations in real time, which provide an opportunity to alter therapy as these mutations emerge. Previous assays based on next-generation sequencing (NGS) and digital PCR (dPCR) usually due to high costs and complicated workflows hampered their clinical adoption in general medical institutions. Here, we proposed a new strategy using base-specific invasive reaction assisted qPCR measure for ESR1 mutations in cfDNA. Two pivotal steps involved in this strategy are target-specific signal generation and the quantification without adding any internal reference or making standard calibration curves. The strategy enabled a high specificity of 0.1% (better than traditional NGS-based method) and a minimum sensitivity of 0.1 copies μL. As validation, with the strategy, cfDNA from endocrine therapy-resistant breast cancers and untreated ones were successfully analyzed (20% mutation rate (2/10) with mutation abundance of 0.54-1.65% vs. 0% mutation rate (0/5)). By virtue of cost-effective, highly flexible and precise, the strategy could be readily implemented in general laboratory, showing promising application perspectives in analysis of other types of mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2021.113959DOI Listing

Publication Analysis

Top Keywords

esr1 mutations
12
base-specific invasive
8
invasive reaction
8
reaction assisted
8
assisted qpcr
8
breast cancers
8
mutation rate
8
mutations
5
strategy
5
sensitive quantitation
4

Similar Publications

Purpose: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy (ET) are the standard first-line treatment for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC); however, disease progression occurs in almost all patients and additional treatment options are needed. Herein we report outcomes of the postMONARCH trial investigating a switch in ET with/without CDK4/6 inhibition with abemaciclib after disease progression on CDK4/6i.

Methods: This double-blind, randomized Phase III study enrolled patients with disease progression on prior CDK4/6i plus aromatase inhibitor as initial therapy for advanced disease or recurrence on/after adjuvant CDK4/6i+ET.

View Article and Find Full Text PDF

Standard treatments in hormone receptor-positive (HR+)/HER2-metastatic breast cancer (mBC) typically involve endocrine therapy (ET) combined with CDK4/6 inhibitors, yet resistance to ET remains a persistent challenge in advanced cases. A deeper knowledge of the use of liquid biopsy is crucial for the implementation of precision medicine in mBC with real-time treatment guidance. Our study assesses the prognostic value of and mutations in DNA derived from extracellular vesicles (EV-DNA) in longitudinal plasma from 59 HR+/HER2-mBC patients previously exposed to aromatase inhibitors, with a comparative analysis against circulating tumor DNA (ctDNA).

View Article and Find Full Text PDF

The progress that has been made in recent years in relation to liquid biopsies in general and circulating tumor DNA (ctDNA) in particular can be seen as groundbreaking for the future of breast cancer treatment, monitoring and early detection. Cell-free DNA (cfDNA) consists of circulating DNA fragments released by various cell types into the bloodstream. A portion of this cfDNA, known as ctDNA, originates from malignant cells and carries specific genetic mutations.

View Article and Find Full Text PDF

PvuII-ESR1 gene polymorphism in premenstrual dysphoric disorder in South Indian women.

Indian J Psychiatry

October 2024

Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.

Background: Premenstrual dysphoric disorder (PMDD) is a condition that affects nearly 3-9% of the women in the reproductive age during the luteal phase of each menstrual cycle characterized by symptoms varying in severity and affecting the quality of life. Earlier research studies conducted have reported independent relationships between PvuII-ESR1-polymorphism and psychological traits in PMDD and risk for cognitive, behavioral, and affective symptoms. However, as the studies are few in number and the results are not consistent, there is a need for our study to link between the PvuII-ESR1gene and PMDD.

View Article and Find Full Text PDF

Imlunestrant with or without Abemaciclib in Advanced Breast Cancer.

N Engl J Med

December 2024

From Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York (K.L.J.); University Hospitals Leuven, Leuven, Belgium (P.N.); Hospital María Curie, Buenos Aires (M.L.C.); Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (S.-B.K.); National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan (E.T.); Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Brussels (P.A.); Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona (C.S.); Baylor University Medical Center, Texas Oncology, U.S. Oncology, Dallas (J.O.); the Breast Center, Department of Obstetrics and Gynecology and Comprehensive Cancer Center Munich, Ludwig Maximilians University Munich University Hospital, Munich, Germany (N.H.); the University of North Carolina at Chapel Hill, Chapel Hill (L.A.C.); the University of Milan, Milan (G.C.); the European Institute of Oncology, IRCCS, Milan (G.C.); Hospital Arnau de Vilanova, Valencia, Spain (A.L.-C.); Garvan Institute of Medical Research and University of New South Wales, Sydney (E.L.); Hospital de Oncología, Centro Médico Nacional Siglo XXI, Mexico City (M.L.G.T.); Yonsei University College of Medicine, Seoul, South Korea (J.S.); the Mastology Department, Women's Health Hospital, São Paulo (A.M.); Harbin Medical University Cancer Hospital, Harbin, China (Q.Z.); National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei (C.-S.H.); the Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan (C.-C.H.); Filios Alta Medicina, Monterrey, Mexico (J.L.M.R.); the Medical Oncology Department, Hospital Universitario Virgen del Rocío, Seville, Spain (M.R.B.); the Department of Breast Surgery, Chiba Cancer Center Hospital, Chiba, Japan (R.N.); Eli Lilly, Indianapolis (K.R.P., C.C.L., E.B., S.C., X.A.W., L.M.S.); and Institut Curie and University of Versailles Saint-Quentin-en-Yvelines-Paris-Saclay University, Paris (F.-C.B.).

Background: Imlunestrant is a next-generation, brain-penetrant, oral selective estrogen-receptor (ER) degrader that delivers continuous ER inhibition, even in cancers with mutations in the gene encoding ERα ().

Methods: In a phase 3, open-label trial, we enrolled patients with ER-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer that recurred or progressed during or after aromatase inhibitor therapy, administered alone or with a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor. Patients were assigned in a 1:1:1 ratio to receive imlunestrant, standard endocrine monotherapy, or imlunestrant-abemaciclib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!