CHD8 (chromodomain helicase DNA-binding protein 8) is a chromatin remodeler associated with autism spectrum disorders. Homozygous Chd8 deletion in mice leads to embryonic lethality, making it difficult to assess whether CHD8 regulates brain development and whether CHD8 haploinsufficiency-related macrocephaly reflects normal CHD8 functions. Here, we report that homozygous conditional knockout of Chd8 restricted to neocortical glutamatergic neurons causes apoptosis-dependent near-complete elimination of neocortical structures. These mice, however, display normal survival and hyperactivity, anxiolytic-like behavior, and increased social interaction. They also show largely normal auditory function and moderately impaired visual and motor functions but enhanced whisker-related somatosensory function. These changes accompany thalamic hyperactivity, revealed by 15.2-Tesla fMRI, and increased intrinsic excitability and decreased inhibitory synaptic transmission in thalamic ventral posterior medial (VPM) neurons involved in somatosensation. These results suggest that excitatory neuronal CHD8 critically regulates neocortical development through anti-apoptotic mechanisms, neocortical elimination distinctly affects cognitive behaviors and sensory-motor functions in mice, and Chd8 haploinsufficiency-related macrocephaly might represent compensatory responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2021.108780 | DOI Listing |
J Appl Genet
January 2025
Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
Gilles de la Tourette syndrome (GTS) and other tic disorders (TDs) have a substantial genetic component with their heritability estimated at between 60 and 80%. Here we propose an oligogenic risk score of TDs using whole-genome sequencing (WGS) data from a group of Polish GTS patients, their families, and control samples (n = 278). In this study, we first reviewed the literature to obtain a preliminary list of 84 GTS/TD candidate genes.
View Article and Find Full Text PDFMol Ther
December 2024
NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy.
J Clin Med
November 2024
Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland.
: The gene encodes chromodomain helicase DNA-binding protein 8 (CHD8), which is a transcriptional regulator involved in neuron development, myelination, and synaptogenesis. Some gene mutations lead to neurodevelopmental syndromes with core symptoms of autism. The aim of this study was to perform an analysis of the family-based association of gene polymorphisms with the occurrence and clinical phenotype of autism spectrum disorder (ASD).
View Article and Find Full Text PDFNeurogenetics
November 2024
J Mol Neurosci
October 2024
Medical College, Shanxi Datong University, Datong, 037009, China.
Chromodomain helicase DNA-binding 8 (CHD8) is a gene that poses a high risk for autism spectrum disorder (ASD) and neurological development delay. Nevertheless, the impact of CHD8 haploinsufficiency on both hippocampus neurogenesis and behavior remains uncertain. Here, we performed behavioral assessments on male and female CHD8 heterozygous mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!