Effective inhibition of the protein derived from cellular myelocytomatosis oncogene (c-Myc) is one of the most sought-after goals in cancer therapy. While several c-Myc inhibitors have demonstrated therapeutic potential, inhibiting c-Myc has proven challenging, since c-Myc is essential for normal tissues and tumors may present heterogeneous c-Myc levels demanding contrasting therapeutic strategies. Herein, we developed tumor-targeted nanomedicines capable of treating both tumors with high and low c-Myc levels by adjusting their ability to spatiotemporally control drug action. These nanomedicines loaded homologues of the bromodomain and extraterminal (BET) motif inhibitor JQ1 as epigenetic c-Myc inhibitors through pH-cleavable bonds engineered for fast or slow drug release at intratumoral pH. In tumors with high c-Myc expression, the fast-releasing (FR) nanomedicines suppressed tumor growth more effectively than the slow-releasing (SR) ones, whereas, in the low c-Myc tumors, the efficacy of the nanomedicines was the opposite. By studying the tumor distribution and intratumoral activation of the nanomedicines, we found that, despite SR nanomedicines achieved higher accumulation than the FR counterparts in both c-Myc high and low tumors, the antitumor activity profiles corresponded with the availability of activated drugs inside the tumors. These results indicate the potential of engineered nanomedicines for c-Myc inhibition and spur the idea of precision pH-sensitive nanomedicine based on cancer biomarker levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c00364 | DOI Listing |
Molecules
December 2024
Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
Enhancer of zeste homolog 2 (EZH2) is a methyltransferase involved in cell cycle regulation, cell differentiation, and cell death and plays a role in modulating the immune response. Although it mainly functions by catalyzing the tri-methylation of H3 histone on K27 (H3K27), to inhibit the transcription of target genes, EZH2 can directly methylate several transcription factors or form complexes with them, regulating their functions. EZH2 expression/activity is often dysregulated in cancer, contributing to carcinogenesis and immune escape, thereby representing an important target in anti-cancer therapy.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Landscape Architecture and Horticulture, Southwest Forestry University, Kunming 650224, China.
Tea plant () is an important horticultural crop. The quality and productivity of tea plants is always threatened by various adverse environmental factors. Numerous studies have shown that intercropping tea plants with other plants can greatly improve the quality of their products.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
Background: Burns and chronic ulcers may cause severe skin loss, leading to critical health issues like shock, infection, sepsis, and multiple organ failure. Effective healing of full-thickness wounds may be challenging, with traditional methods facing limitations due to tissue shortage, infection, and lack of structural support.
Methods: This study explored the combined use of gene transfection and dermal substitutes to improve wound healing.
Biomedicines
November 2024
Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215163, China.
: Colorectal cancer (CRC) frequently co-occurs with intestinal system diseases (ISDs), yet their molecular interplay remains poorly understood. We employed a comprehensive bioinformatics approach to elucidate shared genetic signatures and pathways between CRC and ISDs. : We systematically analyzed 12 microarray and RNA-seq datasets encompassing 989 samples across seven ISDs and CRC.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
Background: Histone deacetylase 4 () is a member of the class II histone deacetylase family, whose members play a crucial role in various biological processes. An in-depth investigation of the transcriptional characteristics of chicken can provide fundamental insights into its function.
Methods: We examined expression in chicken embryonic stem cells (ESC) and spermatogonial stem cells (SSC) and cloned a 444 bp fragment from upstream of the chicken transcription start site.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!