Background: Circular RNAs (circRNAs) crucially regulate tumor progression. In this study, we examined the functional roles and mechanisms of hsa_circ_0003489 in multiple myeloma (MM).

Methods: Upon altering the expressions of hsa_circ_0003489, miR-874-3p, and/or histone deacetylase 1 (HDAC1) in MM1.R cells and treating them with bortezomib (BTZ), cell viability was examined by CCK-8 assay; cell proliferation by Ki-67 immunofluorescence; apoptosis by TUNEL staining, flow cytometry, and western blot; and autophagy by electron microscopy and western blot. The interaction between hsa_circ_0003489 and miR-874-3p as well as that between miR-874-3p and HDAC1 was examined by expressional analysis, dual luciferase reporter assay, and RNA immunoprecipitation. The in vivo impacts of hsa_circ_0003489 on MM growth and sensitivity to BTZ were examined using an MM xenograft mouse model.

Results: Knocking down hsa_circ_0003489 significantly inhibited the viability, cell proliferation, and autophagy, while promoting the apoptosis of MM cells in vitro and MM xenograft in vivo. Suppressing hsa_circ_0003489 also further boosted the cytotoxic effects of BTZ in MM cells and reversed its promoting effect on autophagy. Mechanically, hsa_circ_0003489 acted as a sponge of miR-874-3p and positively regulated the expression of miR-874-3p target, HDAC1. MiR-874-3p and HDAC1 essentially mediated the effects of hsa_circ_0003489 on cell viability, proliferation, apoptosis, and autophagy.

Conclusion: The hsa_circ_0003489/miR-874-3p/HDAC1 axis critically regulates the balance between apoptosis and autophagy. Silencing hsa_circ_0003489 sensitizes MM cells to BTZ by inhibiting autophagy and thus may boost the therapeutic effects of BTZ.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.3329DOI Listing

Publication Analysis

Top Keywords

hsa_circ_0003489
9
multiple myeloma
8
hsa_circ_0003489 mir-874-3p
8
cell viability
8
cell proliferation
8
western blot
8
mir-874-3p hdac1
8
effects btz
8
autophagy
6
mir-874-3p
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!