A variety of functionalized triarylmethane and 1,1-diarylalkane derivatives were prepared via a transition-metal-free, one-pot and two-step procedure, involving the reaction of various benzal diacetates with organozinc reagents. A sequential cross-coupling is enabled by changing the solvent from THF to toluene, and a two-step S 1-type mechanism was proposed and evidenced by experimental studies. The synthetic utility of the method is further demonstrated by the synthesis of several biologically relevant molecules, such as an anti-tuberculosis agent, an anti-breast cancer agent, a precursor of a sphingosine-1-phosphate (S1P) receptor modulator, and a FLAP inhibitor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252654PMC
http://dx.doi.org/10.1002/anie.202101682DOI Listing

Publication Analysis

Top Keywords

sequential cross-coupling
8
benzal diacetates
8
diacetates organozinc
8
organozinc reagents
8
transition-metal-free synthesis
4
synthesis polyfunctional
4
polyfunctional triarylmethanes
4
triarylmethanes 11-diarylalkanes
4
11-diarylalkanes sequential
4
cross-coupling benzal
4

Similar Publications

Chemodivergent dearomatization of benzene-linked O-oxime esters EnT-induced radical cross-coupling.

Chem Sci

January 2025

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT) Guangzhou 510640 China.

Radical-mediated dearomatization strategies offer a blueprint for building value-added and synthetically valuable three-dimensional skeletons from readily available aromatic starting materials. Herein, we report a novel strategy by leveraging benzene-linked O-oxime esters as triply functionalized precursors to form two distinct persistent radicals under a chemodivergent pathway. These radicals then couple with a cyclohexadienyl radical for either carboamination or carbo-aminoalkylation.

View Article and Find Full Text PDF

We present a tandem aza-Heck/Suzuki cross-coupling reaction of -phenyl hydroxamic ethers with readily available arylboronic and alkenyl boronic acids. This protocol is enabled by a palladium catalyst paired with chiral phosphoramidite ligands, particularly under mild reaction conditions, yielding efficient and succinct synthetic routes to chiral isoindolinones with high enantioselectivity. Furthermore, this reaction exhibits excellent functional group compatibility and a rich diversity of subsequent transformations.

View Article and Find Full Text PDF

Enamides have emerged as robust alternatives for enamines, exhibiting versatile reactivity for further synthetic modifications, including nucleophilic addition, cycloaddition, and asymmetric hydrogenation. While transition-metal-catalyzed cross-coupling of alkenyl (pseudo)halides with amides has been widely employed to construct this valuable scaffold, it suffers from some limitations, such as the need for transition-metal catalysts and the preparative synthesis of alkenyl (pseudo)halides. In this study, we report a mild and convenient stereoretentive decarboxylative amidation of α,β-unsaturated carboxylic acids with easily procurable 1,4,2-dioxazol-5-ones, providing a practical synthetic route to enamides.

View Article and Find Full Text PDF

Palladium-catalyzed remote internal C(sp)-H bond chlorination of alkenes.

Nat Commun

December 2024

Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Zhuhai, Zhuhai, 519088, PR China.

Article Synopsis
  • - C(sp)-Cl bonds play a crucial role in many biologically active compounds and can serve as points for chemical modification through various reactions
  • - The study introduces a method for selective chlorination of C(sp)-H bonds in alkenes using a two-step process involving isomerization and hydrochlorination, leading to benzylic and tertiary chlorides with high selectivity
  • - The research highlights the ability to synthesize a specific alkyl chloride from mixed isomeric alkenes found in raw petrochemical materials, which could enhance the late-stage modification of natural products and pharmaceuticals
View Article and Find Full Text PDF

Nickel-Catalyzed O-Arylation of N-Protected Amino Alcohols with (Hetero)aryl Chlorides.

Chemistry

November 2024

Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.

The aryloxyamine motif is a prominent pharmacophore in drug design and development. While these biologically relevant structures could in principle be sustainably assembled from the base metal-catalyzed O-arylation of inexpensive and abundant amino alcohols with (hetero)aryl chlorides, reports of such challenging C-O bond formations with useful scope are lacking. In response, we report herein the hitherto unknown Ni-catalyzed C-O cross-coupling of N-protected amino alcohols (primary, secondary, and tertiary) with (hetero)aryl chlorides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!