Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pollen grains are the male gametophytes in a seed-plant life cycle. Their small, particulate nature and crucial role in plant reproduction have made them an attractive object of study using flow cytometry (FCM), with a wide range of applications existing in the literature. While methodological considerations for many of these overlap with those for other tissue types (e.g., general considerations for the measurement of nuclear DNA content), the relative complexity of pollen compared to single cells presents some unique challenges. We consider these here in the context of both the identification and isolation of pollen and its subunits, and the types of research applications. While the discussion here mostly concerns pollen, the general principles described here can be extended to apply to spores in ferns, lycophytes, and bryophytes. In addition to recommendations provided in more general studies, some recurring and notable issues related specifically to pollen and spores are highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.a.24330 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!