Climate warming is predicted to have major impacts on the structure of terrestrial communities, particularly in high latitude ecosystems where growing seasons are short. Higher temperatures may dampen seasonal dynamics in community composition as a consequence of earlier snowmelt, with potentially cascading effects across all levels of biological organisation. Here, we examined changes in community assembly and structure along a natural soil temperature gradient in the Hengill geothermal valley, Iceland, during the summer of 2015. Sample collection over several time points within a season allowed us to assess whether temperature alters temporal variance in terrestrial communities and compositional turnover. We found that seasonal fluctuations in species richness, diversity and evenness were dampened as soil temperature increased, whereas invertebrate biomass varied more. Body mass was found to be a good predictor of species occurrence, with smaller species found at higher soil temperatures and emerging earlier in the season. Our results provide more in-depth understanding of the temporal nature of community and population-level responses to temperature, and indicate that climate warming will likely dampen the seasonal turnover of community structure that is characteristic of high latitude invertebrate communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1365-2656.13448 | DOI Listing |
Animals (Basel)
December 2024
College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
In the context of global warming and intensified human activities, the loss and fragmentation of species habitats have been exacerbated. In order to clarify the trends in the current and future suitable wintering areas for hooded cranes (), the MaxEnt model was applied to predict the distribution patterns and trends of hooded cranes based on 94 occurrence records and 23 environmental variables during the wintering periods from 2015 to 2024. The results indicated the following.
View Article and Find Full Text PDFSci Rep
January 2025
Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).
View Article and Find Full Text PDFOecologia
January 2025
Department of Biological Sciences, California State Polytechnic University, Humboldt, 1 Harpst St., Arcata, CA, 95521, USA.
The effects of climate warming on the distribution of range-expanding species are well documented, but the interactive effects of climate warming and range-expanding species on recipient communities remain understudied. With climate warming, range-expanding species may threaten local biodiversity due to their relatively stronger competitive or predatory effects on potentially weakened, or less well-adapted recipient communities. Acanthinucella spirata is a predatory marine gastropod that has expanded its distribution north along the California coast since the Pleistocene via a poleward range shift, tracking climatic warming.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate School/Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan.
Recent rapid sea ice reduction in the Pacific sector of the Arctic Ocean is potentially associated with inflow of Pacific-origin water via the Bering Strait. For the first time, we detected remarkable subsurface warming around the Chukchi Borderland in the Arctic Ocean over the recent two decades (i.e.
View Article and Find Full Text PDFPlant Sci
January 2025
Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China. Electronic address:
People have accepted the clear fact that elevated CO (eCO) and climate warming are happening, but sustainable agricultural systems are still struggling to adapt. 3,4-dimethyl-1H-pyrazol phosphate (DMPP) is currently recognized as a highly effective strategy for reducing nitrogen (N) loss and related environmental impacts. There is still uncertainty, however, whether DMPP could contribute to building climate-resilient ecosystems in a future climate scenario with co-elevated CO and temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!