Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds.

Macromol Biosci

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.

Published: April 2021

In this work, a 3D printed double-network (DN) hydrogel scaffold is designed with chitosan (CS) and polyvinyl alcohol (PVA) as the framework matrix. The addition of PVA into the CS-based hydrogel clearly enhances the mechanical properties and lowers the swelling behaviors of the hydrogels. The crosslinking of CS with genipin can perform the pre-crosslinking to improve the viscosity and 3D printability of the hydrogel precursor, while increasing the PVA content results in lowering the viscosity and 3D printability of the pre-crosslinked hydrogel. The antibacterial property results of the DN hydrogel display that the hydrogel have favorable long-lasting antibacterial ability. The appropriate pre-crosslinked hydrogel with the CS/PVA mass ratio of 3:10 and pre-crosslinking time of 7 h is used for 3D printing to prepare the 3D printed porous DN hydrogels. Moreover, the anti-tumor drug doxorubicin (DOX) is loaded into the 3D printed porous DN hydrogels and the in vitro release study displays the sustainable drug release behavior. And the DOX release from hydrogel scaffold can be adjusted by the pH value of release environment. All of the results indicate that the porous DN CS/PVA hydrogel scaffolds have great application potential for tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202000398DOI Listing

Publication Analysis

Top Keywords

hydrogel
10
hydrogel scaffolds
8
hydrogel scaffold
8
viscosity printability
8
pre-crosslinked hydrogel
8
printed porous
8
porous hydrogels
8
preparation printed
4
printed chitosan/polyvinyl
4
chitosan/polyvinyl alcohol
4

Similar Publications

This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.

View Article and Find Full Text PDF

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

Intrinsic fluorescence hydrogels for ON/OFF screening of antidiabetic drugs: assessing α-glucosidase inhibition by acarbose.

J Mater Chem B

January 2025

Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.

Diabetes remains one of the most prevalent chronic diseases globally, significantly impacting mortality ratetables. The development of effective treatments for controlling glucose level in blood is critical to improve the quality of life of patients with diabetes. In this sense, smart optical sensors using hydrogels, responsive to external stimuli, have emerged as a revolutionary approach to diabetes care.

View Article and Find Full Text PDF

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Hydrogel Strain Sensors for Integrating Into Dynamic Organ-on-a-Chip.

Small

January 2025

Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!