Glucanotransferases that can synthesize cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→} (CI4) from dextran were purified to homogeneity from the culture supernatant of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006. The molecular mass of both enzymes was estimated to be 86 kDa by SDS-PAGE. The glucanotransferase, named CI4-forming enzyme, from Agreia sp. exhibited the highest activity at pH 6.0 and 40 °C. The enzyme was stable on the pH range of 4.6-9.9 and up to 40 °C. On the other hand, the enzyme from M. trichothecenolyticum exhibited the highest activity at pH 5.7 and 40 °C. The enzyme was stable on the pH range of 5.0-6.9 and up to 35 °C. Both enzymes catalyzed 4 reactions, namely, intramolecular α-1,6-transglycosylation (cyclization), intermolecular α-1,6-transglycosylation, hydrolysis of CI4, and coupling reaction. Furthermore, the CI4-forming enzyme produced CI4 from α-1,6-linked glucan synthesized from starch by 6-α-glucosyltransferase. These findings will enable the production of CI4 from starch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bbb/zbaa093 | DOI Listing |
Biosci Biotechnol Biochem
December 2021
Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan.
We performed whole genome sequence analyses of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006 that secrete enzymes to produce cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→} (CI4) from dextran. Full-length amino acid sequences of CI4-forming enzymes were identified by matching known N-terminal amino acid sequences with products of the draft genome.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
February 2021
R&D Division, HAYASHIBARA CO., Ltd., Okayama, Japan.
Glucanotransferases that can synthesize cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→} (CI4) from dextran were purified to homogeneity from the culture supernatant of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006. The molecular mass of both enzymes was estimated to be 86 kDa by SDS-PAGE.
View Article and Find Full Text PDFCarbohydr Res
October 2020
Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan.
Two bacterial strains isolated from soil, namely Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006, were found to produce a novel oligosaccharide. The oligosaccharide was enzymatically produced from dextran using the culture supernatant of Agreia sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!