Aims: Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown.
Methods And Results: We conducted studies in heart tissue from progerin-expressing LmnaG609G/G609G (G609G) mice, including microscopy, intracellular calcium dynamics, patch-clamping, in vivo magnetic resonance imaging, and electrocardiography. G609G mouse cardiomyocytes showed tubulin-cytoskeleton disorganization, t-tubular system disruption, sarcomere shortening, altered excitation-contraction coupling, and reductions in ventricular thickening and cardiac index. G609G mice exhibited severe bradycardia, and significant alterations of atrio-ventricular conduction and repolarization. Most importantly, 50% of G609G mice had altered heart rate variability, and sinoatrial block, both significant signs of premature cardiac aging. G609G cardiomyocytes had electrophysiological alterations, which resulted in an elevated action potential plateau and early afterdepolarization bursting, reflecting slower sodium current inactivation and long Ca+2 transient duration, which may also help explain the mild QT prolongation in some HGPS patients. Chronic treatment with low-dose paclitaxel ameliorated structural and functional alterations in G609G hearts.
Conclusions: Our results demonstrate that tubulin-cytoskeleton disorganization in progerin-expressing cardiomyocytes causes structural, cardiac conduction, and excitation-contraction coupling defects, all of which can be partially corrected by chronic treatment with low dose paclitaxel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803078 | PMC |
http://dx.doi.org/10.1093/cvr/cvab055 | DOI Listing |
bioRxiv
November 2024
Department of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA.
Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disorder characterized by multiple aging-like phenotypes, including disease in large arteries. HGPS is caused by an internally truncated prelamin A (progerin) that cannot undergo the ZMPSTE24-mediated processing step that converts farnesyl-prelamin A to mature lamin A; consequently, progerin retains a carboxyl-terminal farnesyl lipid anchor. In cultured cells, progerin and full-length farnesyl-prelamin A (produced in cells) form an abnormal nuclear lamin meshwork accompanied by nuclear membrane ruptures and cell death; however, these proteins differ in their capacity to cause arterial disease.
View Article and Find Full Text PDFJ Clin Invest
October 2024
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
Int J Mol Sci
August 2024
Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany.
Aging Cell
September 2024
Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.
The role of the inflammasomes in aging and progeroid syndromes remain understudied. Recently, MCC950, a NLRP3 inhibitor, was used in Zmpste24 mice to ameliorate the phenotypes. However, the safety of MCC950 was questioned due to liver toxicity observed in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!