Deuteration of Formyl Groups via a Catalytic Radical H/D Exchange Approach.

ACS Catal

Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721-0207, USA.

Published: February 2020

H/D exchange at formyl groups represents the straightforward approach to C-1 deuterated aldehydes. This transformation has been recently realized by transition metal and NHC carbene catalysis. Mechanistically, all these processes involve an ionic pathway. Herein we report a distinct photoredox catalytic, visible light mediated neutral radical approach. Selective control of highly reactive acyl radical in the energy barrier surmountable, reversible reaction enables driving the formation of deuterated products when an excess of DO is employed. The power of the H/D exchange process has been demonstrated for not only aromatic aldehydes, but also aliphatic substrates, which have been difficult in transitional metal catalyzed H/D exchange reactions, and for selective late-stage deuterium incorporation into complex structures with uniformly high deuteration level (>90%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899177PMC
http://dx.doi.org/10.1021/acscatal.9b05300DOI Listing

Publication Analysis

Top Keywords

h/d exchange
16
formyl groups
8
deuteration formyl
4
groups catalytic
4
catalytic radical
4
h/d
4
radical h/d
4
exchange
4
exchange approach
4
approach h/d
4

Similar Publications

Proton diffusion and hydrogen/deuterium exchange in amorphous solid water at temperatures from 114 to 134 K.

J Chem Phys

December 2024

Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

The reaction coefficient for hydrogen/deuterium (H/D) exchange and the diffusion of hydrated excess protons within amorphous solid water (ASW) are characterized as a function of temperature. For these experiments, water films are deposited on a Pt(111) substrate at 108 K, and reactions with pre-adsorbed hydrogen atoms produce hydrated protons. Upon heating, protons diffuse within the water, and H/D exchange occurs when they encounter D2O probe molecules deposited in the films.

View Article and Find Full Text PDF

C-H Bond Activation by Sulfated Zirconium Oxide is Mediated by a Sulfur-Centered Lewis Superacid.

Angew Chem Int Ed Engl

December 2024

University of California, Riverside, Chemistry, 501 Big Springs Rd, 92521, Riverside, UNITED STATES OF AMERICA.

Sulfated zirconium oxide (SZO) catalyzes the hydrogenolysis of isotactic polypropylene (iPP, Mn = 13.3 kDa, Đ = 2.4, = 94 %) or high-density polyethylene (HDPE, Mn = 2.

View Article and Find Full Text PDF

Deuterated molecules are of growing interest because of the specific characteristics of deuterium, such as stronger C-D bonds being stronger than C-H bonds. Polyethylene glycols (PEGs) are widely utilized in scientific fields (e.g.

View Article and Find Full Text PDF

F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood.

View Article and Find Full Text PDF

Zinc and RNA Binding Is Linked to the Conformational Flexibility of ZRANB2: A CCCC-Type Zinc Finger Protein.

Biochemistry

December 2024

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States.

Ran-binding domain-containing protein 2 (ZRANB2) is a zinc finger (ZF) protein that plays a key role in alternative splicing. ZRANB2 is composed of two ZF domains that contain four invariant cysteine residues per domain. ZRANB2 binds RNA targets that contain AGGUAA sequence motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!