The emergence of infectious agents poses a continual economic and environmental challenge to aquaculture production, yet the diversity, abundance, and epidemiology of aquatic viruses are poorly characterised. In this study, we applied salmon host transcriptional biomarkers to identify and select fish in a viral disease state, but only those that were negative for known viruses based on RT-PCR screening. These fish were selected for metatranscriptomic sequencing to discover potential viral pathogens of dead and dying farmed Atlantic () and Chinook () salmon in British Columbia (BC). We found that the application of the biomarker panel increased the probability of discovering viruses in aquaculture populations. We discovered two viruses that have not previously been characterised in Atlantic salmon farms in BC (Atlantic salmon calicivirus and Cutthroat trout virus-2), as well as partially sequenced three putative novel viruses. To determine the epidemiology of the newly discovered or emerging viruses, we conducted high-throughput reverse transcription polymerase chain reaction (RT-PCR) and screened over 9,000 farmed and wild salmon sampled over one decade. Atlantic salmon calicivirus and Cutthroat trout virus-2 were in more than half of the farmed Atlantic salmon we tested. Importantly we detected some of the viruses we first discovered in farmed Atlantic salmon in Chinook salmon, suggesting a broad host range. Finally, we applied hybridisation to determine infection and found differing cell tropism for each virus tested. Our study demonstrates that continual discovery and surveillance of emerging viruses in these ecologically important salmon will be vital for management of both aquaculture and wild resources in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887441 | PMC |
http://dx.doi.org/10.1093/ve/veaa069 | DOI Listing |
Fish Shellfish Immunol
January 2025
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile. Electronic address:
Piscirickettsiosis causes the highest mortality in Atlantic salmon (Salmo salar) farming, and prophylactic treatment has not provided complete protection to date. In this study, we analyzed the immune and metabolic responses of Atlantic salmon inoculated with live and inactivated Piscirickettsia salmonis, monitoring plasma markers related to immune and stress responses. The fish were inoculated with inactivated P.
View Article and Find Full Text PDFJ Aquat Anim Health
December 2024
Department of Health Management and Centre for Veterinary Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
Objective: The primary objective was to construct a time series model for the abundance of the adult female (AF) sea lice Lepeophtheirus salmonis in Atlantic Salmon Salmo salar farms in the Bay of Fundy, New Brunswick, Canada, for the period 2016-2021 and to illustrate its short-term predictive capabilities.
Methods: Sea lice are routinely counted for monitoring purposes, and these data are recorded in the Fish-iTrends database. A multivariable autoregressive linear mixed-effects model (second-order autoregressive structure) was generated with the outcome of the abundance of AF sea lice and included treatments, infestation pressures (a measure that represents the dose of exposure of sea louse parasitic stages to potential fish hosts) within sites (internal) and among sites (external), and other predictors.
Sci Rep
December 2024
Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3, Canada.
Monitoring mortality is an essential strategy for fish health management. Commercial marine finfish sites in British Columbia, Canada, are required to report mortality events (MEs) to Fisheries and Oceans Canada (DFO), which makes these data publicly available. This study aimed to analyze the spatial and temporal patterns of ME composition and total MEs.
View Article and Find Full Text PDFSci Rep
December 2024
Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada.
The potential risk posed by infectious agents (IAs) associated with netpen aquaculture to wild fishes is determined based on the "release" of IAs from netpens into the environment, the "exposure" of the wild fish to those released agents, and the "consequence" for wild fish experiencing infection by those agents. Information available to characterize these three factors is often lacking, and the occurrence of transmission from aquaculture to wild fish as well as potential consequences of such transmission are difficult to observe. In this study, we utilized environmental DNA (eDNA) to characterize the release of dozens of IAs from, and exposure of Pacific salmon to, Atlantic salmon aquaculture.
View Article and Find Full Text PDFSci Rep
December 2024
Norwegian Institute for Nature Research, Postbox 5685, 7485, Trondheim, Norway.
The Atlantic salmon (Salmo salar) is an iconic species of significant ecological and economic importance. Their downstream migration as smolts represents a critical life-history stage that exposes them to numerous challenges, including passage through hydropower plants. Understanding and predicting fine-scale movement patterns of smolts near hydropower plants is therefore essential for adaptive and effective management and conservation of this species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!