Aim: The aim was to compare cyclic fatigue, torsional failure, and flexural resistance of NiTi endodontic files: Hyflex CM (HYF), Genius files (GEN), WaveOne Gold (WOG), and ProTaper Universal (PTU).

Materials And Methods: Fifteen files of each brand were used in cyclic fatigue test and other fifteen files for flexural test and torsional failure test. To the cyclic fatigue test, used torque limit and revolutions per minute were set according to the respective manufacturer guidelines. The test was performed under deionized water at 36°C, and all files were tested in a 3 mm radius of curvature with an angle of curvature of 60°, time of the fracture was recorded. Torsional fatigue test was performed in the torsional machine (Instron MT, USA), recording the fractured time and torque data by the machine software. Flexural fatigue test was performed in 60° of curvature. All data were statistically analyzed by one-way analysis of variance, and Tukey test for multiple comparisons.

Results: Cyclic fatigue (seconds)= HYF: 744.1 ± 231.9/GEN: 477.3 ± 220.5/WO: 278.4 ± 57.0/PTU: 152.4 ± 65.2; torsional failure (N × cm)= HYF: 6.85 ± 1.484/GEN: 6.55 ± 0.828/WOG: 5.73 ± 0.360/PTU: 4.43 ± 0.900; flexural resistance (N × mm)= HYF: 0.33 ± 0.294/GEN: 0.19 ± 0.136/WOG: 0.98 ± 0.216/PTU: 1.85 ± 0.276.

Conclusion: HYF and GEN showed the best results for cyclic fatigue, torsional failure, and flexural resistance, followed by WOG and PTU.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883783PMC
http://dx.doi.org/10.4103/JCD.JCD_409_20DOI Listing

Publication Analysis

Top Keywords

cyclic fatigue
24
torsional failure
20
flexural resistance
16
fatigue test
16
fatigue torsional
12
failure flexural
12
test performed
12
fifteen files
8
test
8
torsional
7

Similar Publications

The aim of this study was to assess the cyclic fatigue resistance of a single-file system (i.e., Hyflex EDM OneFile), during continuous rotation and reflex dynamic motion with and without irrigation.

View Article and Find Full Text PDF

This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.

View Article and Find Full Text PDF

Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest.

View Article and Find Full Text PDF

Metastable state preceding shear zone instability: Implications for earthquake-accelerated landslides and dynamic triggering.

Proc Natl Acad Sci U S A

January 2025

Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.

Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.

View Article and Find Full Text PDF

Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel.

Nanomaterials (Basel)

January 2025

Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China.

Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!