is a Gram-negative pathogen that has emerged as one of the most highly antibiotic-resistant bacteria worldwide. Multidrug efflux within these highly drug-resistant strains and other opportunistic pathogens is a major cause of failure of drug-based treatments of infectious diseases. The best-characterized multidrug efflux system in is the prevalent rug fflux B (AdeB) pump, which is a member of the resistance-nodulation-cell division (RND) superfamily. Here, we report six structures of the trimeric AdeB multidrug efflux pump in the presence of ethidium bromide using single-particle cryoelectron microscopy (cryo-EM). These structures allow us to directly observe various novel conformational states of the AdeB trimer, including the transmembrane region of trimeric AdeB can be associated with form a trimer assembly or dissociated into "dimer plus monomer" and "monomer plus monomer plus monomer" configurations. We also discover that a single AdeB protomer can simultaneously anchor a number of ethidium ligands and that different AdeB protomers can bind ethidium molecules simultaneously. Combined with molecular dynamics (MD) simulations, we reveal a drug transport mechanism that involves multiple multidrug-binding sites and various transient states of the AdeB membrane protein. Our data suggest that each AdeB protomer within the trimer binds and exports drugs independently. has emerged as one of the most highly antibiotic-resistant Gram-negative pathogens. The prevalent AdeB multidrug efflux pump mediates resistance to a broad spectrum of clinically relevant antimicrobial agents. Here, we report six cryo-EM structures of the trimeric AdeB pump in the presence of ethidium bromide. We discover that a single AdeB protomer can simultaneously anchor a number of ligands, and different AdeB protomers can bind ethidium molecules simultaneously. The results indicate that each AdeB protomer within the trimer recognizes and extrudes drugs independently.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545137 | PMC |
http://dx.doi.org/10.1128/mBio.03690-20 | DOI Listing |
DNA Res
January 2025
Biochemistry Research Lab (Rm216), Dept. of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine. Trinidad and Tobago - West Indies.
Bacteria that are chronically exposed to high levels of pollutants demonstrate genomic and corresponding metabolic diversity that complement their strategies for adaptation to hydrocarbon-rich environments. Whole genome sequencing was carried out to infer functional traits of Serratia marcescens SMTT recovered from soil contaminated with crude oil. The genome size (Mb) was 5,013,981 with a total gene count of 4,842.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Pharmaceutical Sciences, Lucknow University, Lucknow, UP, India.
In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.
View Article and Find Full Text PDFExpert Rev Anti Infect Ther
January 2025
Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
Introduction: There is a rise in the emergence of multidrug resistant fungal pathogens worldwide, including in Africa.
Method: This systematic review summarized the published data on the mechanisms and epidemiology of antifungal resistance in species in Africa between 2000 and early 2024.
Result: Seventeen reports from seven African countries were analyzed but due to the paucity of data, the prevalence of antifungal resistant isolates in Africa could not be estimated.
Mikrobiyol Bul
October 2024
İnönü University Faculty of Medicine, Deparment of Medical Microbiology, Malatya, Türkiye.
The increasing antibiotic resistance in Pseudomonas aeruginosa, responsible for both community-acquired and hospital-acquired infections, is of global significance. The primary mechanisms contributing to resistance development in P.aeruginosa include the increased activity of efflux pumps, decreased permeability of outer membrane porins and the production of carbapenemases.
View Article and Find Full Text PDFJ Trop Med
December 2024
Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya.
A diverse range of pollutants, including heavy metals, agrochemicals, pharmaceutical residues, illicit drugs, personal care products, and other anthropogenic contaminants, pose a significant threat to aquatic ecosystems. The Winam Gulf of Lake Victoria, heavily impacted by surrounding human activities, faces potential contamination from these pollutants. However, studies exploring the presence of antibiotic resistance genes (ARGs) in the lake remain limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!