Background: Mosses in high-latitude ecosystems harbor diverse bacterial taxa, including N-fixers which are key contributors to nitrogen dynamics in these systems. Yet the relative importance of moss host species, and environmental factors, in structuring these microbial communities and their N-fixing potential remains unclear. We studied 26 boreal and tundra moss species across 24 sites in Alaska, USA, from 61 to 69° N. We used cultivation-independent approaches to characterize the variation in moss-associated bacterial communities as a function of host species identity and site characteristics. We also measured N-fixation rates via N isotopic enrichment and identified potential N-fixing bacteria using available literature and genomic information.
Results: Host species identity and host evolutionary history were both highly predictive of moss microbiome composition, highlighting strong phylogenetic coherence in these microbial communities. Although less important, light availability and temperature also influenced composition of the moss microbiome. Finally, we identified putative N-fixing bacteria specific to some moss hosts, including potential N-fixing bacteria outside well-studied cyanobacterial clades.
Conclusions: The strong effect of host identity on moss-associated bacterial communities demonstrates mosses' utility for understanding plant-microbe interactions in non-leguminous systems. Our work also highlights the likely importance of novel bacterial taxa to N-fixation in high-latitude ecosystems. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903681 | PMC |
http://dx.doi.org/10.1186/s40168-021-01001-4 | DOI Listing |
Arterioscler Thromb Vasc Biol
January 2025
Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, CA.(P.K.J., M.A., M.N.R.).
The intestinal microbiota influences many host biological processes, including metabolism, intestinal barrier functions, and immune responses in the gut and distant organs. Alterations in its composition have been associated with the development of inflammatory disorders and cardiovascular diseases, including Kawasaki disease (KD). KD is an acute pediatric vasculitis of unknown etiology and the leading cause of acquired heart disease in children in the United States.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
Background: Scalp itch without evident cause is an uncomfortable symptom that annoys many people in life but lacks adequate attention in academic.
Aims: To investigate the relationship between scalp itching and microorganisms, and identify the key microbes and predicted functions associated with scalp itching, furtherly to provide useful targets for scalp itch solution.
Methods: We performed microbial comparison between 44 normal subjects and 89 subjects having scalp itching problem with un-identified origin based on 16S rRNA gene sequencing and ddPCR (digital droplet PCR), and identified itch relevant microbes and predicted functions.
MethodsX
June 2025
IRD, UMR Eco&Sols, INRAE, CIRAD, Institut Agro, Université Montpellier, Montpellier, France.
Soil microbes are among the most abundant and diverse organisms on Earth but remain poorly characterized. New technologies have made possible to sequence the DNA of uncultivated microorganisms in soil and other complex ecosystems. Genome assembly is crucial for understanding their functional potential.
View Article and Find Full Text PDFIntroduction: Rock weathering is a fundamental process that shapes Earth's topography, soil formation, and other surface processes. However, the mechanisms underlying the influence of fertilizer application on weathering remain poorly understood, especially with respect to bacterial intervention.
Methods: In this study, purple parent rocks from Shaximiao Group (Js) and Penglaizhen Group (Jp) were selected to investigate the effects of fertilizer application on the bacterial community and weathering characteristics of these rock by leaching experiment.
Front Microbiol
January 2025
Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States.
Metagenomic sequencing is increasingly being employed to understand the assemblage and dynamics of the oyster microbiome. Specimen collection and processing steps can impact the resultant microbiome composition and introduce bias. To investigate this systematically, a total of 54 farmed oysters were collected from Chesapeake Bay between May and September 2019.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!