A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ontology-guided segmentation and object identification for developmental mouse lung immunofluorescent images. | LitMetric

Background: Immunofluorescent confocal microscopy uses labeled antibodies as probes against specific macromolecules to discriminate between multiple cell types. For images of the developmental mouse lung, these cells are themselves organized into densely packed higher-level anatomical structures. These types of images can be challenging to segment automatically for several reasons, including the relevance of biomedical context, dependence on the specific set of probes used, prohibitive cost of generating labeled training data, as well as the complexity and dense packing of anatomical structures in the image. The use of an application ontology helps surmount these challenges by combining image data with its metadata to provide a meaningful biological context, modeled after how a human expert would make use of contextual information to identify histological structures, that constrains and simplifies the process of segmentation and object identification.

Results: We propose an innovative approach for the semi-supervised analysis of complex and densely packed anatomical structures from immunofluorescent images that utilizes an application ontology to provide a simplified context for image segmentation and object identification. We describe how the logical organization of biological facts in the form of an ontology can provide useful constraints that facilitate automatic processing of complex images. We demonstrate the results of ontology-guided segmentation and object identification in mouse developmental lung images from the Bioinformatics REsource ATlas for the Healthy lung database of the Molecular Atlas of Lung Development (LungMAP1) program CONCLUSION: We describe a novel ontology-guided approach to segmentation and classification of complex immunofluorescence images of the developing mouse lung. The ontology is used to automatically generate constraints for each image based on its biomedical context, which facilitates image segmentation and classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901098PMC
http://dx.doi.org/10.1186/s12859-021-04008-8DOI Listing

Publication Analysis

Top Keywords

segmentation object
16
object identification
12
mouse lung
12
anatomical structures
12
ontology-guided segmentation
8
developmental mouse
8
immunofluorescent images
8
types images
8
densely packed
8
biomedical context
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!