In this paper, dispersive liquid-liquid microextraction (DLLME), long optical path microcells, and a selective chromogenic reagent were employed to improve the analytical efficiency of cobalt determination by spectrophotometry. The methodology proposed in the present study is based upon the microextraction of a cobalt(II) complex with 1-[4-[(2-hydroxynaphthalen-1-yl)methylideneamino] phenyl]ethanone (HNE) by DLLME and measurement of the absorbance of the sedimented phase using a microcell with an optical path length of 50 mm (Microcell-50). DLLME was performed using a binary mixture containing 900 μL of methanol as a dispersing solvent and 400 μL of CHCl (extraction solvent) at pH 6-8 adjusted by a mixture of HCl and NaOH. The electronic spectrum of the dark brown complex recorded in the sedimented phase using Microcell-50 shows a well-defined peak at λ 324 ± 3 nm with a molar absorptivity of 1.08 × 10 M cm. Cobalt was monitored at a detection limit (LOD) of 0.08 μg L and in the linear concentration range of 0.45-10 μg L, while the limit of quantitation (LOQ), relative standard deviation (RSD), and the enhancement factor (EF) were 0.264, 1.6 μgL, and 223, respectively. Our method was evaluated by determining cobalt in certified reference materials and experimental samples, and the results were compared with ICP-MS measurements. Moreover, the chemical structure of the [Co(CHON)] complex was suggested through using different characterization techniques such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), thermal analysis, and powder X-ray diffraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.119552DOI Listing

Publication Analysis

Top Keywords

dispersive liquid-liquid
8
liquid-liquid microextraction
8
long optical
8
optical path
8
sedimented phase
8
efficiency enhancement
4
enhancement spectrophotometric
4
spectrophotometric estimation
4
cobalt
4
estimation cobalt
4

Similar Publications

Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery.

Pharm Res

January 2025

Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.

Improving the bioavailability  of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.

View Article and Find Full Text PDF

In the present research, an attempt has been made to develop a new thin film microextraction method for the extraction of several polycyclic aromatic hydrocarbons from aqueous samples collected from different industrial units prior to their analysis by gas chromatography combined with a flame ionization detector. In this approach, a thin iron mesh was modified by the formation of iron(II) oxinate on its surface and used for the extraction of analytes without an additional sorbent. For this purpose, first, the mesh was immersed in a sulfuric acid solution and then transferred into an 8-hydroxy quinoline (oxine) solution dissolved in ammonia solution.

View Article and Find Full Text PDF

A recent overview of the application of emerging extraction medium-based sample preparation for the determination of aflatoxins and their precursors in food samples.

J Chromatogr A

January 2025

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China. Electronic address:

Food safety problem caused by aflatoxins (AFs) has become a major concern worldwide. However, due to the complexity of food matrices and the low concentration of analytes, the accurate and sensitive determination of AFs and their precursors in the biosynthetic pathway is extremely challenging, so the development of efficient sample preparation techniques has been urgently required. This paper reviews the recent advances in sample preparation based on some emerging extraction media for the determination of AFs and their precursors in different food samples, including ionic liquids (ILs) and IL-based composites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs).

View Article and Find Full Text PDF

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!