Antibiotic exposure decreases soil arsenic oral bioavailability in mice by disrupting ileal microbiota and metabolic profile.

Environ Int

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China. Electronic address:

Published: June 2021

AI Article Synopsis

  • The study examines how gut microbiota influences the oral bioavailability of arsenic (As) when ingesting As-contaminated soil, using a mouse model with and without penicillin to alter the microbiota.
  • Mice exposed to penicillin had significantly lower As accumulation in kidneys and urine, indicating that disrupting gut bacteria reduces As bioavailability.
  • The findings highlight the role of gut microbiota and metabolites in the solubilization and transformation of soil-derived As, providing insights into the health risks associated with consuming arsenic-contaminated soils.

Article Abstract

Oral bioavailability of arsenic (As) determines levels of As exposure via ingestion of As-contaminated soil, however, the role of gut microbiota in As bioavailability has not evaluated in vivo although some in vitro studies have investigated this. Here, we made a comparison in As relative bioavailability (RBA) estimates for a contaminated soil (3913 mg As kg) using a mouse model with and without penicillin perturbing gut microbiota and metabolites. Compared to soil exposure alone (2% w/w soil in diets), addition of penicillin (100 or 1000 mg kg) reduced probiotic Lactobacillus and sulfate-reducing bacteria Desulfovibrio, enriched penicillin-resistant Enterobacter and Bacteroides, and decreased amino acid concentrations in ileum. With perturbed gut microbiota and metabolic profile, penicillin and soil co-exposed mice accumulated 2.81-3.81-fold less As in kidneys, excreted 1.02-1.35-fold less As in urine, and showed lower As-RBA (25.7-29.0%) compared to mice receiving diets amended with soil alone (56 ± 9.63%). One mechanism accounted for this is the decreased concentrations of amino acids arising from the gut microbiota shift which resulted in elevated iron (Fe) and As co-precipitation, leading to reduced As solubilization in the intestine. Another mechanism was conversion of bioavailable inorganic As to less bioavailable monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) by the antibiotic perturbed microflora. Based on in vivo mouse model, we demonstrated the important role of gut microbiota and gut metabolites in participating soil As solubilization and speciation transformation then affecting As oral bioavailability. Results are useful to better understand the role of gut bacteria in affecting As metabolism and the health risks of As-contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2021.106444DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
oral bioavailability
12
role gut
12
soil
8
microbiota metabolic
8
metabolic profile
8
mouse model
8
gut
7
microbiota
6
bioavailability
5

Similar Publications

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.

View Article and Find Full Text PDF

Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.

View Article and Find Full Text PDF

Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.

View Article and Find Full Text PDF

Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions.

Microbiol Res

December 2024

Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China. Electronic address:

Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!