A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of enzymes as a diagnostic tool for soils as affected by municipal solid wastes. | LitMetric

Application of enzymes as a diagnostic tool for soils as affected by municipal solid wastes.

J Environ Manage

Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, 781039, India. Electronic address:

Published: May 2021

Assessing the relationship between soil enzyme activities (SEAs) and heavy metals (HMs) without any amendment has rarely been conducted in soils contaminated with municipal solid wastes (MSW). Five soil enzymes [dehydrogenase (DHA), alkaline phosphatase (ALP), acid phosphatase (ACP), urease (UR), and nitrate reductase (NR)] have been assessed for HMs bioremediation using Zea mays L. grown in unamended soils that were contaminated with different types of MSW. Pot experiment was conducted for two seasons with soils collected from seven different locations within the MSW site. Experimental soil samples included a control (CA), contaminated by brick kiln wastes (SA1), kitchen and household wastes (SA2), medical wastes (SA3), mixed wastes (SA4), glass wastes (SA5), and metal scrap wastes (SA6). Rhizospheric soils were collected after the harvest of each season to investigate the impact of HMs on SEAs and physicochemical properties of soil. The results revealed an increase in DHA, ALP, and NR activities by 89.30%, 58.03% and 21.98% in SA1. Likewise, enhanced activities for UR (28.26%) and ACP (19.6%) were observed in SA3 and SA5 respectively. Insignificant increase in the macronutrients and organic carbon (OC) were also noted. The increased microbial count and the relatively higher amount of organic matter (OM) in the rhizosphere indicated the role of OM in HMs immobilization. Principal component analysis (PCA) indicated that DHA and NR are the important soil enzymes, underscored by their active involvement in the C and N turnover in the soil. Likewise, correlation analysis showed that DHA and NR activities were positively correlated with copper (Cu) (0.90, p < 0.01; 0.88, p < 0.01), suggesting its participation as a cofactor in enzymatic activities. In contrast, DHA was negatively correlated with cadmium (Cd) (-0.48, p < 0 0.05). Finally, these results indicated that in the absence of exogenous nutrient amendment, the SEAs were governed by OC, available nitrogen (Avl. N), Cu and Cd respectively. The study also highlighted the need for extensive research on SEAs for its utilization as a bioindicator in various soil bioremediation and quality management practices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112169DOI Listing

Publication Analysis

Top Keywords

municipal solid
8
wastes
8
solid wastes
8
soils contaminated
8
soil enzymes
8
soils collected
8
soil
6
soils
5
application enzymes
4
enzymes diagnostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!