Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, many kinds of gemini-type amphiphilic peptides have been designed and shown their advantage as self-assembling nanomaterials. In this study, we proposed a simple strategy to design gemini surfactant-like peptides, which are only composed of natural amino acids and can be easily obtained by conventional peptide sythnesis. Taking two prolines as the turn-forming units, a peptide named APK was designed. The petide has a linear sequence but naturally takes the conformation like a gemini surfactant. Compared with a single-tailed surfactant-like peptide A6K, APK showed much stronger ability to undergo self-assembly and to encapsulate hydrophobic pyrene. Several hydrophobic drugs including paclitaxel, doxorubicin, etomidate and propofol were encapsulated by APK, and the corresponding formulations showed anti-tumor or anesthetic efficacy comparable to their respective clinical formulations. Furthermore, APK could inhibit the growth of different microorganisms including E. coli, S. aureus and C. albicans. Etomidate and propofol formulations encapsulated by APK also showed strong antimicrobial activity. Taking APK as an example, our study indicated a straightforward strategy to design gemini surfactant-like peptides, which could be potential nanomaterials for exploring hydrophobic drug formulations with efficacy, safety and self-antimicrobial activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.02.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!